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ABSTRACT

From the standpoint of non-commutative probability, we investigate operators over Fock spaces

whose behavior on one level depends only on two of its neighbors. This behavior can be interpreted

using the combinatorics of lattice paths and non-crossing partitions. Our first objective is to gener-

alize (via a common framework) the results of Anshelevich (from 2007), Lenczewski & Sałapata

(from 2008), and Bożejko & Lytvynov (from 2009), whose constructions exhibited this behavior.

We extend a number of results from these papers to our more general setting. These include the

quadratic relation satisfied by the generating function for (a variant of) the free cumulants, the re-

solvent form of the generating function for the Wick polynomials, and classification results for the

case when the vacuum state on the operator algebra is tracial. We are able to handle the generat-

ing functions in infinitely many variables by considering their matrix-valued versions. Finally, we

provide norm estimates guaranteeing that these generating functions are represented by bounded

operators.

Our second objective is to focus on a specific class of examples within our framework, which

generalizes the free multinomial example from Anshelevich’s work. Moreover, their distributions

over the Fock space have convolution-power relations with those of the underlying elements of the

originating space, seen through the viewpoint of free, Boolean, and (by considering representations

with a similar construction) conditionally free cumulants. Moreover, we study the von Neumann

algebras generated by these operators given various originating non-commuting probability spaces.

In addition, we include the relevant background on free probability, operator algebras, and combi-

natorics prior to discussing these constructions and results.
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3.1.1 Wysoczański (2006) [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.1.2 Ricard (2006) [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.2 Cumulants, Convolutions, and Independence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
3.2.1 The Distributions as Free Additive Convolution Powers . . . . . . . . . . . . . . . . . . . . . . . 104
3.2.2 Conditionally Free Cumulants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.3 von Neumann Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.3.1 B = C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.3.2 B = ∗di=1C2 (Free product of 3.3.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.3.3 B = Md+1(C), d ≥ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.3.4 B = L∞[0, 2π] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

APPENDIX A. AN ALTERNATIVE CONSTRUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

vii



1. INTRODUCTION AND BACKGROUND

1.1 Introduction

In quantum mechanics, a Hilbert space serves as the states space of a single particle, but Fock

spaces were first introduced by V.A. Fock in 1932 to model the quantum states of multiple iden-

tical particles. Informally, a Fock space is the direct sum of Hilbert spaces, each representing

zero-particle states, one-particle states, two-particle, and so on. Since the particles are assumed to

be identical, each of these n-particle state spaces are an n-fold tensor product of a single-particle

space. If the particles are bosons, the Fock space of symmetric tensor products (see [7]) is the

corresponding state space, while the Fock space of anti-symmetric tensor products is the corre-

sponding space for fermions. In addition, we have the Boltzmann (or free) Fock space of the usual

tensor products (see Subsection 1.2.11).

Since their introduction, Fock spaces have seen use in a plethora of fields beyond quantum

mechanics, including representation theory, combinatorics, and operator algebras. In the last few

decades, various Fock spaces which are deformations (some to a greater extent than others) of

the classic constructions mentioned above have been studied. With the right choice of operators

on such spaces, one can represent various structures, such as commutation relations, orthogonal

polynomials, and large classes of probability distributions.

We are particularly interested in three such constructions, because their operators all exhibit

the common feature of interaction with only two (adjacent) tensor levels. Compare this to the free

Fock space, where no interaction between levels occurs, and the symmetric Fock space, where

all levels interact. Our first main objective is to give a general construction of a Fock space with

such behavior, over a ∗-probability space B rather than a Hilbert space, and show that many of the

results from each of the three motivating constructions’ respective papers hold in this framework.

To be specific, let B be a unital ∗-algebra, with a positive faithful linear functional φ, and

form the algebraic Fock space Falg(B) =
⊕∞

n=0 B⊗n. For each b ∈ B, we will define operators
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a+(b), a−(b), a0(b) and their sum X(b). Here the creation operator a+(b) is defined in the usual

way (see Subsection 1.2.11), but the annihilation operator acts on simple tensors as

a−(b)(u1 ⊗ . . .⊗ un) = (γ + φ)[bu1]u2 ⊗ . . .⊗ un,

where γ + φ1B is some completely positive map. Note that this operator couples together the first

two components of the tensor. This should be compared with, on the one hand, the Boltzmann

(free) Fock space (covered in Subsection 1.2.11), where the annihilation operator acts only on the

first component of the tensor; and, on the other hand, with the q-Fock space, where its action

involves all components of the tensor. Note that if γ = 0, this is just the standard free annihilation

operator (see Subsection 1.2.11) on the full Fock space F(L2(B, φ)). The preservation operator

has the form

a0(b)(u1 ⊗ . . .⊗ un) = Λ(b)u1 ⊗ u2 ⊗ . . .⊗ un

or more generally

a0(b)(u1 ⊗ . . .⊗ un) = Λ(b⊗ u1)⊗ u2 ⊗ . . .⊗ un

for a map Λ satisfying some symmetry condition, and acts only on the first component of the tensor.

Denoting the 0-length tensor by Ω (called the vacuum vector), we have an induced vector state

A 7→ 〈AΩ,Ω〉. The behavior of this state over the aforementioned operators X(b) determines

their joint distributions, in the sense of free probability. Analyzing these distributions from the

perspectives of moments, Boolean cumulants, and free cumulants is our first objective.

On a related topic, free and Boolean cumulant generating functions for free Meixner families

[8, 1] satisfy second-order equations. Depth-two action on the Fock space results in such equations

being satisfied not by the scalar-valued free cumulant generating function R(u) itself, but by its

B-valued “kernel” R′(u) with R(u) = φ[uR′(u)u]. In fact,

R′(u)v = v +R′(u)γ [uR′(u)u] v +R′(u)Λ(u⊗ v). (1.1)

2



This result easily generalizes to a finite family of variables {ui}di=1. To make sense of a generating

function for joint free cumulants of infinitely many variables {ui}∞i=1, we take an approach different

from [4]. We form an infinite matrix which contains all the information about joint free cumulants

of {ui}∞i=1, and still satisfies (an analogous version of) equation (1.1). In the case when Λ(u⊗v) =

Λ(u)v, for {ui}∞i=1 uniformly small, this matrix corresponds to a genuine bounded operator. The

analysis is similar in style to, but different from, computations with fully matricial free cumulants

[9].

In addition, we are also interested in the operators’ Wick polynomials, that is, polynomials in

{X(u) : u ∈ B} such that W (u1 ⊗ u2 ⊗ . . .⊗ un)Ω = u1 ⊗ u2 ⊗ . . .⊗ un. We perform a similar

matricial analysis for the joint generating function of Wick polynomials. It can be interpreted as

an infinite matrix, and (under appropriate assumptions) as a bounded operator. As in [1, 4], it has

a resolvent-type form

W (u) = (B(u)−X(u))−1(B(u)− φ[u2]),

where B(u) = 1 + Λ(u) + (γ + φ)[u2]. See Section 2.3.

We also look into the algebras generated by all operators {X(u) : u ∈ B}, first by investigating

the situation when the vacuum state on the algebra is tracial. The depth-two nature of the action

allows us to write down explicit conditions on φ, γ,Λ which guarantee this. In the case when

γ = 0, the Fock space is the full Fock space, but the circular operators X(u) are deformed by a

non-trivial Λ. We show that one can always use Λ to define a new multiplication on B, so that

the representation splits into a semicircular and a free compound Poisson parts. More generally, if

γ[u] = ηu for η central (related to the construction from [3]) then one has a similar decomposition,

but with the third component on which Λ(u⊗ v) = λuv for λ central.

1.1.1 Secondary Construction

The paper [1] contains a special example of a “depth-two action” construction whose algebra

generated by the X(b) has a tracial vacuum state, which naturally corresponded to the free multi-

nomial distribution. This example also generalizes to our “primary” setting here, and we find it

3



interesting enough to be considered separately. This construction is a variation of the t-deformed

free gaussian operators studied in [5] and [6].

As before, we start with a *-algebra B with a state φ. Denote B◦ = kerφ, and let T (B, φ) be the

tensor algebra of B◦. We denote the element of T (B, φ) corresponding to f ∈ B◦ by X(f), so that

T (B, φ) is identified with the algebra of polynomials in {X(f) : f ∈ B◦}. This notation is natural,

as we will represent the tensor algebra on two different (families of) Fock spaces, parameterized

by a fixed t ≥ 0. Via these representations, we will define two (families of) states Φt and Ψt on

T (B, φ) (described explicitly in Theorem 3.3.1.1) with the following properties:

• If {f1, . . . , fn} ⊂ B◦ are freely independent in (B, φ), then {X(f1), . . . , X(fn)} are freely

independent with respect to Φt.

• If {f1, . . . , fn} ⊂ B◦ are Boolean independent in (B, φ), then {X(f1), . . . , X(fn)} are freely

independent with respect to Ψt and conditionally free with respect to the pair (Φt,Ψt).

We are also interested in the study of the von Neumann algebras W ∗(T (B, φ),Φt) arising in

the GNS representation of T (B◦) with respect to Φt. To summarize:

• Let B = C
α
⊕ C

1−α
, with the state determined by the parameter α ∈ (0, 1

2
]. Then

W ∗
(
T
(
C
α
⊕ C

1−α
, φ

)
,Φt

)
'



L∞[0, 1]
t

⊕ C
1−α−αt

⊕ C
α−(1−α)t

, t < α
1−α

L∞[0, 1]
α+αt

⊕ C
1−α−αt

, α
1−α ≤ t < 1−α

α

L∞[0, 1], 1−α
α
≤ t

• Let B be the free product ∗di=1

(
C
αi
⊕ C

1−αi

)
, p◦i the projection with trace αi in the ith copy of

4



C2, and assuming without loss of generality that the αi ⊂ (0, 1
2
] are increasing. Then

W ∗(X(p◦i ) : 1 ≤ i ≤ d) '



L(Fx)
1−γ1−γ2

⊕ C
γ1
⊕ C

γ2
, t <

αd−
∑d−1
i=1 αi

1−(αd−
∑d−1
i=1 αi)

,

L(Fx)
1−γ1

⊕ C
γ1
,

αd−
∑d−1
i=1 αi

1−(αd−
∑d−1
i=1 αi)

≤ t <
1−((

∑d
i=1 αi))

(
∑d
i=1 αi)

,

Fd,
1−((

∑d
i=1 αi))

(
∑d
i=1 αi)

≤ t,

where

γ1 = max

{
1−

(
d∑
i=1

α1

)
(1 + t), 0

}

γ2 = max

{(
αd −

d−1∑
i=1

αi

)
(1 + t)− t, 0

}

and x is chosen so that the free dimension is the sum of the free dimensions of W ∗(X(p◦i )).

• For 1 ≤ i ≤ d, let p◦i = 1
2
(E1,1+i + E1+i,1) ∈ Md+1(C) with the trace φ11 which returns the

1, 1 entry of a matrix. Then

W ∗(X(p◦i ) : 1 ≤ i ≤ d) '


L(Fd) if t ≥

√
d

L(Fd)⊕ B(`2) otherwise.

• Let B = L∞[0, 1], with the state given by integrating with respect to the Lebesgue measure.

Then for t > 0, W ∗(T (L∞[0, 1], dx),Φt) is a II1-factor.

1.1.2 Organization of This Work

The background section is meant to serve as a convenient reference, as well as introduce one

who is familiar with operator algebras but not free probability theory, to the subject. Subsec-

tions 1.2.1, 1.2.2, and 1.2.5 establish the basic concepts of free probability theory (taking care

to define terms whose precise meanings vary from author to author), while 1.2.3 and 1.2.4 cover

the relevant basics of von Neumann algebras and how free probability can help us understand
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them. Free cumulants, relevant combinatorics, and the related free additive convolution are cov-

ered in 1.2.6 and 1.2.7. Then subsections 1.2.8 and 1.2.9 summarize the analogous concepts of

conditionally free probability and operator-valued probability. In Subsection 1.2.10, the relevant

combinatorics of lattice paths are summarized, along with their relations to non-crossing partitions.

Finally, a basic Fock space model is given as an example, on which the operators of interest have

the semi-circle distribution. This also serves as a natural starting point to discuss the ways our

construction generalizes this and the three motivating constructions mentioned before.

The first phase begins in Section 2.1, where we first present our main construction. In Sec-

tion 2.2, we prove formulas for joint moments, and Boolean and free cumulants, of the operators

{X(u) : u ∈ B}. We also compare and contrast these formulas with the operator-valued results of

[10]. In particular, unlike in [10], the inner product in this paper is scalar-valued rather than B-

valued. In Section 2.3, we discuss Wick polynomials, and matricial generating functions for them

and for the free cumulants. In Section 2.4, we provide conditions under which operators X(u),

as well as various generating functions, are bounded. In Section 2.5 we derive the conditions

for the vacuum state to be tracial. We also prove a representation theorem under the assumption

that the vacuum state is tracial. The results in Sections 2.3 and 2.4 are proven in the setting of

Λ(u⊗ v) = Λ(u)v; in contrast, the results in Section 2.5 are of main interest for general Λ.

The secondary construction can be found in Section 3.1. We also define yet another construc-

tion, for the purpose of creating a second state, with which we will study conditional freeness of

our operators. We then discuss some previous works which have influenced our own. In Sec-

tion 3.2, we present the relationships between the distributions of the underlying f ∈ B, and their

counterparts X(f). In particular, we discuss the implications of free or Boolean independence

in B on the corresponding X(f) with respect to the main vacuum state or the second state. In

Section 3.3, we study the von Neumann algebras generated by certain X(f) with respect to those

states, for several starting algebras B.
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1.2 Background

1.2.1 Free Probability and Operator Algebra Terminology

In free probability, the primary object of interest is a (non-commutative) probability space

(NCPS), which is a pair (A, φ) of the following:

• a ∗-algebra A that is unital (contains a multiplicative unit 1 ∈ A), and

• a linear functional φ : A → C, which is a

state, which simply means it is a unital map: φ[1] = 1. It is also

self-adjoint: φ[a∗] = φ[a], and

positive: φ[a∗a] ≥ 0.

Elements of the space are called non-commuting random variables.

A word of caution is in order: some authors define a NCPS without the ∗-operation, in which

case the last two properties of φ need not hold. These authors usually call the space defined above

a ∗-probability space (∗-PS) instead.

In applications to operator algebras especially, A usually comes with more structure. First,

NCPSs are often subalgebras of the algebra of bounded linear operators over some Hilbert space

H, denoted B(H). On this algebra, we have the operator norm:

‖x‖ = sup
ξ∈H,‖ξ‖=1

‖xξ‖
‖ξ‖

.

Any vector *-subalgebra of B(H) that is closed under this norm is called a C*-algebra.∗ For a

∗-PS (A, φ) ⊂ B(H), if φ is norm-continuous, the space is called a C*-probability space (C*-PS).

Even more structure can be imposed, via two more topologies that need to be defined- using

convergence to define these is far more useful and intuitive (for our purposes) than to describe their

∗Alternatively, one can define a C*-algebra as a Banach ∗-algebra over C whose norm satisfies the C* identity:
‖a∗a‖ = ‖a‖2 for all a ∈ A. We will discuss this further in 1.2.3.1.
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bases. A net {xi} ⊂ B(H) converges to x ∈ B(H) in the strong operator topology (SOT) if

lim
i
‖(x− xi)ξ‖ = 0 ∀ξ ∈ H.

This is the topology of point-wise convergence, translated to the context of linear operators. Simi-

larly, a net {xi} ⊂ B(H) converges to x ∈ B(H) in the weak operator topology (WOT) if

lim
i
〈(x− xi)ξ, η〉 = 0 ∀ξ, η ∈ H.

For a subset X ⊂ B(H), its commutant is

X ′ := {y ∈ B(H) |xy = yx ∀x ∈ X}.

Its double commutant is X ′′ := (X ′)′.

Theorem 1.2.1.1. (von Neumann, Bicommutant Theorem, 1929) For any unital ∗-subalgebra

M ⊂ B(H),

M
SOT

= M
WOT

= M ′′,

whereM
SOT

andM
WOT

denote the closures ofM under the strong and weak operator topologies,

respectively. Thus, these analytic constructions and the purely algebraic double commutant are, in

fact, the same object, called a von Neumann algebra.

One last topology that needs to be defined on M is the σ-weak topology: a net {xi} ⊂ B(H)

converges to x ∈ B(H) in this topology if

lim
i

∞∑
n=1

〈(x−xi)ξn, ηn〉 = 0 ∀ sequences {ξn}n∈N, {ηn}n∈N ⊂ H such that
∑
n

‖ξn‖2,
∑
n

‖ηn‖2 <∞.

A state ψ is normal if it is σ-weakly continuous. For a ∗-PS (A, φ) ⊂ B(H), if A is a von

Neumann algebra and φ is normal, the space is called a W*-probability space (W*-PS).
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A state ψ : M → C is faithful if ψ[x∗x] = 0 only if x = 0, while a state ψ on a NCPS A is

tracial, or a trace, if for all x, y ∈ A, ψ[xy] = ψ[yx].

Finally, let us discuss properties of maps between ∗-algebras B and C. An element b ∈ B is

positive if b =
∑k

i=1 u
∗
iui for some k and ui ∈ B. A map T : B → C is positive if for each u ∈ B,

T (u∗u) is positive in C. It is completely positive if for each n, the map

Tn : Mn(B)→Mn(C), Tn
(
[aij]

n
i,j=1

)
= [T (aij)]

n
i,j=1

is positive, where we use the usual ∗-structure on Mn(B). It is faithful if T (u∗u) = 0 only for

u = 0.

Another inconsistency between authors should be noted: many restrict the definition of non-

commuting random variable to only the self-adjoint elements, that is, those that satisfy a = a∗,

while others consider all elements. This isn’t an issue most of the time, due to the fact that every

element of a ∗-algebra can be written as a linear combination of two self-adjoint elements:

a = <a+ i=a where <a :=
1

2
(a+ a∗) and =a =

1

2i
(a− a∗).

From here on, we will focus our attention on self-adjoint operators unless noted otherwise.

1.2.1.1 Key Examples

Example 1.2.1.2. Let (Ω,Σ, P ) be a probability measure space. Then

A = L∞(Ω, P ) (with f ∗ = f) paired with expectation E[f ] =

∫
Ω

fdP

is a commutative probability space. Moreover,A is a von Neumann algebra, and even more is true:

Theorem 1.2.1.3. (Gelfand, Naimark) If A ⊂ B(H) is a commutative von Neumann algebra,

then it is ∗-isomorphic to L∞(X,µ) for some measure space (X,Σ, µ), where X is a compact

Hausdorff space and µ is a positive, regular Borel measure.
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Note that the unital condition on any expectation φ implies all commutative probability spaces

under the earlier definitions must take the form of the preceding example.

Example 1.2.1.4. Extending the previous example, let

A = Mn(C)⊗ L∞(Ω, P ).

These are random matrices. This is a NCPS when paired with the state

φ[A] =
1

n
(Tr⊗ E)(A) =

1

n
Tr

([∫
Ω

AijdP

]
ij

)
.

In other words, take the normalized trace of the matrix whose entries are the expected values

of their respective entries from the random matrix A.

The following example is the subject of a famous (still) open problem in operator theory, and

was a major inspiration of the notions of free independence and free products, which will be

discussed later.

Example 1.2.1.5. For a discrete group G, let C[G] denote the space of finite linear combinations

of elements of G over C. This is a vector algebra with multiplication

(∑
g∈G

αxx

)(∑
h∈G

βhh

)
=
∑
g∈G

αgβg−1hh.

These vectors can also be considered finitely supported functions G → C, where it is clear that

this multiplication is just convolution. With the ∗-operation

f ∗(g) = f(g−1),

C[G] is a ∗-algebra with unit δe = 1e, where e ∈ G is the group’s identity.

Finally, define the expectation

τ [f ] = f(e),
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or, in terms of linear combinations, this map simply returns the coefficient assigned to e.

1.2.2 Distributions and Free Independence

Free probability is so named due to its abundance of analogies with classical probability theory,

starting with the basic concepts of this section.

Definition 1.2.2.1. For x ∈ (A, φ), a symmetric element of a NCPS, its nth moment (with respect

to φ) is the number φ[xn] (n ∈ N). Its first moment is called its mean. These numbers uniquely

determine its distribution (with respect to φ), the linear functional

φx : C[X]→ C, φx[p(X)] = φ[p(x)].

Definition 1.2.2.2. More generally, for x1, ..., xn ∈ (A, φ) symmetric, their joint (or mixed) mo-

ments are the numbers

{φ[xu(1)xu(2)...xu(k)] | k ≥ 0, 1 ≤ u(i) ≤ n},

which uniquely define their joint distribution

φx1,...,xn : C〈X1, ..., Xn〉 → C, φx1,...,xn [p(X1, ..., Xn)] = φ[p(x1, ..., xn)].

Note that every distribution (resp. joint distribution) can be considered an expectation map on

the *-algebra C[X] (resp. C〈X1, ..., Xn〉), with ∗-operation

x∗i = xi,

(xu(1)xu(2)...xu(k))
∗ = xu(k)...xu(2)xu(1).

Recall that in classical probability, two random variables X : Ω → C and Y : Ω → C are

independent if and only if E[f(X)g(Y )] = E[f(X)]E[g(Y )] for all bounded continuous functions
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f, g : C → C. The generalization of this idea to a non-commutative probability space (A, φ)

serves as the definition of independence in this context:

Definition 1.2.2.3. Subalgebras A1, ...,An ⊂ (A, φ) are (classically) independent with respect to

φ if

• ab = ba for any a ∈ Ai, b ∈ Aj for i 6= j, and

• For all ai ∈ Ai,

φ[a1a2...an] = φ[a1]φ[a2]...φ[an].

This definition is quite restrictive, since in most cases, the subalgebras we wish to study do not

usually commute with each other. A much more useful notion of independence, one that does not

require commutativity of any degree, is as follows:

Definition 1.2.2.4. (Voiculescu) Subalgebras A1, ...,An ⊂ (A, φ) are freely independent, or free,

with respect to φ if whenever

a. ai ∈ Au(i) such that u(1) 6= u(2), u(2) 6= u(3), ..., u(n− 1) 6= u(n), and

b. φ[ai] = 0 ∀i = 1, ..., n, we have

φ[a1a2...an] = 0.

In other words, any product of mean-zero terms, where no consecutive pair of terms in the product

belongs to the same subalgebra, has mean zero.

A third form of independence often appears in non-commutative spaces:

Definition 1.2.2.5. SubalgebrasA1, ...,An ⊂ (A, φ) that do not contain the unit† ofA are Boolean

independent with respect to φ if whenever

ai ∈ Au(i) such that u(1) 6= u(2), u(2) 6= u(3), ..., u(n− 1) 6= u(n),

†The definition would yield a degenerate structure otherwise. For example, if A1 contained the unit, then for
a, b ∈ A2, we would have φ[a1b] = φ[a]φ[1]φ[b] by definition, but the left-hand side is φ[ab], while the right-hand
side is φ[a]φ[b].
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φ[a1a2...an] = φ[a1]φ[a2]...φ[an].

In other words, any product of terms (with possibly non-zero mean), where no consecutive pair of

terms in the product belongs to the same subalgebra, has mean equal to the product of the terms’

individual means.

Elements are called independent (resp. freely independent) if the *-subalgebras they generate

with the unit of A are independent (resp. freely independent). Elements are Boolean independent

if the *-subalgebras they generate (without the unit of A) are. Finally, we end this subsection with

other important definitions regarding distributions.

Definition 1.2.2.6. A set of variables {ai}i∈I ⊂ A are identically distributed with respect to φ if

φ[ani ] = φ[anj ] for all n ∈ N and i, j ∈ I.

Definition 1.2.2.7. Let {(Ak, φk)}k∈N and (A, φ) be non-commutative probability spaces.

• Let bk ∈ Ak, b ∈ A. We say {bk} converges in distribution to b if

lim
k→∞

φk[b
n
k ] = φ[bn] for all n ∈ N.

• More generally, for an index set I , let b(i)
k ∈ Ak for k ∈ N and each i ∈ I , and let b(i) ∈ A

for each i ∈ I . We say that {b(i)
k }i∈I converges in distribution to b(i) if

lim
k→∞

φk[b
(i1)
k ...b

(in)
k ] = φ[b(i1)...b(i1)] for all n ∈ N and i1, ..., in ∈ I.

1.2.3 von Neumann Algebras

1.2.3.1 Abstractly Defined *-Algebras

Often, C*-algebras are considered independently of a Hilbert space under the following defini-

tions: let A be a normed algebra over C that is norm-complete and satisfies ‖ab‖ ≤ ‖a‖‖b‖ for all
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a, b ∈ A (that is, a Banach algebra). A map A → A, a 7→ a∗ is called an involution if

• (a∗)∗ = a

• (a+ b)∗ = a∗ + b∗

• (xy)∗ = y∗x∗

• (λx)∗ = λx∗ for λ ∈ C.

• (Some authors also require the involution to be isometric: ‖x∗‖ = ‖x‖. We will require it as

well.)

An element a ∈ A is called symmetric‡ if a∗ = a.

A Banach algebra with an involution * is called a C*-algebra if it satisfies the C* property:

‖a∗a‖ = ‖a‖2 for all a ∈ A.

A W*-algebra M is a C*-algebra that, when considered as a Banach space, has a pre-dual

space, that is, there exists a Banach space X such that X∗ = M. The σ-topology on it is the

weak-* topology onM generated by X as bounded linear functionals on it.

A ∗-homomorphism Φ : M1 → M2 from one W*-algebra into another is said to be a W*-

homomorphism if it is σ-to-σ continuous. Moreover, the image of this mapping is always σ-closed

(Proposition 1.16.2, [11]).

A ∗-representation of a C*-algebra A is a ∗-homomorphism π : A → B(H) for some Hilbert

spaceH, while a W*-representation of a W*-algebraM is a W*-homomorphism π :M→ B(H)

for some Hilbert spaceH.

1.2.3.2 Unitization

If A is a non-unital (abstract) C*-algebra, we can “add” a unit to make it unital; that is, we

embed A into the smallest unital C*-algebra containing it. To be more precise, let

Ã := A⊕ C,
‡This is more general terminology than self-adjoint, which refers to bounded operators on a Hilbert space.
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with the following algebraic operations:

(a, α)(b, β) = (ab+ αb+ βa, αβ)

(a, α)∗ = (a∗, α)

‖(a, α)‖ = sup
b∈A,‖b‖=1

‖ab+ αb‖.

This definition comes from the concrete case in B(H): IfA ⊂ B(H) is non-unital, we can take

the C*-algebra generated by A and the identity operator on H. In this case, we can justify writing

elements of this C*-algebra as a + α1, and most authors (myself included) do so in the abstract

case as well, rather than writing (a, α).

1.2.3.3 The GNS Construction

Now suppose we have a W*-algebraM along with some faithful, σ-continuous state φ :M→

C (a state on a non-unital C*-algebra is a linear functional with norm 1). Then it turns out that we

get a von Neumann algebra:

Theorem 1.2.3.1. (Gelfand, Naimark, Segal (GNS) Construction) Suppose we have a W*-algebra

M along with some faithful, σ-continuous state φ :M→ C. Then there exists a Hilbert spaceH,

an injective W*-representation π :M→ B(H), and a cyclic vector ξ ∈ H such that

φ(x) = 〈π(x)ξ, ξ〉 ∀x ∈M.

In particular,M is isomorphic to its image through this map.

Proof. Without loss of generality (by considering unitizations), assume thatM is unital. Define

the sesquilinear form

〈x, y〉φ = φ(y∗x).

By faithfulness, it is a (non-degenerate) inner product onM. By taking the closure with respect to

this inner product, we get a Hilbert spaceHφ, with norm induced by the inner product.
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Next, denoting by Λ :M→Hφ the natural embedding andMφ := Λ(M), we can define the

representation π :M→ B(Hφ) by

π(x)Λ(y) = Λ(xy).

Through density ofMφ in Hφ, it suffices to check that this is a *-homomorphism through its

behavior on it:

π(x)π(y)Λ(z) = Λ(xyz) = π(xy)Λ(z),

〈π(x)∗Λ(y),Λ(z)〉 = 〈Λ(y), π(x)Λ(z)〉 = 〈Λ(y),Λ(xz)〉

= φ((xz)∗y) = φ(z∗x∗y) = 〈Λ(x∗y),Λ(z)〉 = 〈π(x∗)Λ(y),Λ(z)〉.

Next, to verify faithfulness, assume π(x) = 0. Then

0 = π(x)∗π(x) = π(x∗x), so

0 = 〈π(x∗x)Λ(1),Λ(1)〉 = 〈Λ(x∗x),Λ(1)〉 = φ(x∗x),

so by faithfulness of φ, x = 0.

Next,

‖π(x)Λ(y)‖2
2 = ‖Λ(xy)‖2

2 = φ((xy)∗(xy)) = φ(y∗x∗xy).

We know that y∗x∗xy ≤ ‖x‖2y∗y. Since φ is positive, φ(y∗x∗xy) ≤ ‖x‖2φ(y∗y) = ‖x‖2‖Λ(y)‖2.

Hence, π(x) ∈ B(H).

Let ξ = Λ(1), which is clearly cyclic forM. Also, for x ∈M,

φ(x) = φ(1∗x) = 〈Λ(x),Λ(1)〉 = 〈π(x)Λ(1),Λ(1)〉 = 〈π(x)ξ, ξ〉.

All that remains is to check that π is normal (This follows the remarks given on page 41 of
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[11]).

First, we’ll need the following proposition (Corollary 1.15.5 from [11]): A linear functional f

on B(H) is in the predual of B(H) if and only if there exist sequences {ξn}, {ηn} ⊂ H such that

∞∑
n=1

‖ξn‖2 <∞,
∞∑
n=1

‖ηn‖2 <∞, and f(x) =
∞∑
n=1

〈xξn, ηn〉.

Using this for an arbitrary f ∈ the predual of B(Hφ), we get {ξn}, {ηn} ⊂ H as described in the

proposition. SinceMφ is dense inHφ, there exist families of sequences {an,m}m, {bn,m}m ⊂Mφ

such that ‖an,m − ξn‖ → 0 and ‖bn,m − ηn‖ → 0 as m→∞ for all n ∈ N. Moreover, they can be

chosen so that ‖ξn − an,m‖ < 1
2n/2

and ‖ηn − bn,m‖ < 1
2n/2

for all n. Then

∣∣∣∣∣
∞∑
n=1

〈π(x)ξn, ηn〉 −
∞∑
n=1

〈π(x)an,m, bn,m〉

∣∣∣∣∣
≤

∣∣∣∣∣
∞∑
n=1

〈π(x)(ξn − an,m), ηn〉

∣∣∣∣∣+

∣∣∣∣∣
∞∑
n=1

〈π(x)an,m, (ηn − bn,m)〉

∣∣∣∣∣
≤ ‖x‖

∞∑
n=1

‖ξn − an,m‖‖ηn‖+ ‖x‖
∞∑
n=1

‖an,m‖‖ηn − bn,m‖

≤ ‖x‖

(
∞∑
n=1

‖ξn − an,m‖2

)1/2( ∞∑
n=1

‖ηn‖2

)1/2
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+ ‖x‖

(
∞∑
n=1

‖an,m‖2

)1/2( ∞∑
n=1

‖ηn − bn,m‖2

)1/2

≤ ‖x‖

(
∞∑
n=1

‖ξn − an,m‖2

)1/2( ∞∑
n=1

‖ηn‖2

)1/2

+ ‖x‖

( ∞∑
n=1

‖an,m − ξn‖2

)1/2

+

(
∞∑
n=1

‖ξn‖2

)1/2
( ∞∑

n=1

‖ηn − bn,m‖2

)1/2

≤ ‖x‖

(
∞∑
n=1

‖ξn − an,m‖2

)1/2( ∞∑
n=1

‖ηn‖2

)1/2

+ ‖x‖

1 +

(
∞∑
n=1

‖ξn‖2

)1/2
( ∞∑

n=1

‖ηn − bn,m‖2

)1/2

This converges to zero by the dominated convergence theorem (when considering the difference

sums as integrals over counting measure), since the sequences {‖ξn− an,m‖2} and {‖ηn− bn,m‖2}

are dominated above by 1
2n

by choice of sequences.

Hence, f(x) is a uniform limit of sequences {fm(x)} on the unit sphere ofM, where

fm(x) =
∞∑
n=1

〈π(x)an,m, bn,m〉 =
∞∑
n=1

φ(b∗n,mxan,m).

f ◦ π ∈ the predual ofM (when considered as a subspace ofM∗, its dual space), since fm ∈

the predual. Hence, the mapping x 7→ π(x) is normal from bounded spheres inM into B(Hφ), so

it is normal on all ofM.

Proposition 1.2.3.2. The GNS construction is unique in the sense that if H′ is another Hilbert

space such that there exists an injective W*-representation π′ :M→ B(H′), with cyclic vector ξ′

such that φ(x) = 〈π(x)ξ′, ξ′〉, then π′(M) is isomorphic to the image π(M) previously given.

All of this shows that every W*-algebra paired with a faithful normal state is a von Neumann

algebra. This justifies our restriction of the definition of W*-probability space to von Neumann

subalgebras of bounded operators over a Hilbert space paired with a normal expectation map. (If

the state is not faithful, then we replaceHφ in the GNS construction with its quotient space induced
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by {x ∈M|φ(x∗x) = 0}, a situation I’ve omitted from this work.) Note that some authors refer to

W*-algebras as abstract von Neumann algebras, while their GNS constructions are called concrete.

1.2.3.4 The Spectral Theorem

Definition 1.2.3.3. For a set X , a σ-algebra Σ of subsets of X , and a Hilbert space H, a spectral

measure on (X,Σ,H) is a function E : Σ→ B(H) satisfying

• E(∅) = 0 and E(X) = 1,

• For each U ∈ Σ, E(U) is a projection, that is, E(U)∗ = E(U)2 = E(U),

• E(U1 ∩ U2) = E(U1)E(U2) for all U1, U2 ∈ Σ, and

• Whenever {Ui}∞i=1 ⊂ Σ is a sequence of pairwise disjoint subsets, then

E

(
∞⋃
i=1

Ui

)
=
∞∑
i=1

E(Ui).

Lemma 1.2.3.4. If E is a spectral measure on (X,Σ,H), then for all g, h ∈ H,

Eg,h(U) := 〈E(U)g, h〉

defines a complex-valued measure on (X,Σ) with total variation at most ‖g‖‖h‖.

For a spectral measure E on (X,Σ,H) and f : X → C a bounded, Σ-measurable function, we

can uniquely define the (operator-valued) integral
∫
fdE first for simple functions:

φ =
k∑
j=1

αjχUj →
∫
φdE :=

k∑
j=1

αjE(Uj)

Then, for f bounded, measurable, we define
∫
fdE as the B(H)-norm limit of integrals over

simple functions which converge uniformly to f (see Proposition IX.1.10 from [12]).
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Definition 1.2.3.5. For x ∈ B(H), its spectrum is

σ(x) = {z ∈ C|(x− zI) is not invertible}.

The spectrum is always non-empty and compact.

An element x of a C* or von Neumann algebra is normal if x∗x = xx∗.

Theorem 1.2.3.6. (The Spectral Theorem for C*-Algebras, IX.2.2 from [12]) If x ∈ B(H) is

normal, then there is a unique spectral measure E on the Borel subsets of σ(x) such that

• x =
∫
zdE(z),

• If U ⊂ σ(x) is relatively open and non-empty, then E(U) 6= 0,

• For any a ∈ B(H), then ax = xa and a∗x = xa∗ if and only if aE(U) = E(U)a for every

Borel U ⊂ σ(x).

Moreover, the continuous functions on the spectrum of x is

C(σ(x)) ' C∗(x) (isometric C*-isomorphic),

the C*-algebra generated by x, via the map πx : f(z) 7→
∫
f(z)dE(z). This map is called the

continuous functional calculus.

By taking their respective WOT closures, a version for von Neumann algebras follows (at least,

forH separable).

Theorem 1.2.3.7. (The Spectral Theorem for von Neumann Algebras, IX.8.10 from [12]) If x ∈

B(H) is normal on H a separable Hilbert space, then there is a unique spectral measure E on

the Borel subsets of σ(x) satisfying the above properties. Moreover, the von Neumann algebra

generated by x is

W ∗(x) ' L∞(σ(x), µ) (isometric W*-isomorphic),

20



where µ is a positive, Borel measure on the spectrum of x satisfying

µ(U) = 0 if and only if E(U) = 0.

Similar to the C*-algebra case, the map is πx : f(z) 7→
∫
f(z)dE(z), but extended WOT-

continuously. In this case, it is called the Borel functional calculus.

Definition 1.2.3.8. For a faithful normal state τ on B(H) and a normal operator x ∈ B(H),

Eτ (U) := τ [πx(χU)] defines a Borel measure µx, called the spectral measure of x with respect

to τ or sometimes called the probability density of x with respect to τ .

Corollary 1.2.3.9. For an element x of a C* or W*-probability space, this measure is the unique

compactly supported Borel probability measure on C whose moments share those of x (moments

of a measure are defined in the sense of classical probability: E[Xn] =
∫
xndµX).

All claims follow directly from the Spectral Theorem.

1.2.3.5 Free Group Factors

For this subsection, we will be in the setting of Example 1.2.1.5. Each element of a discrete

group G acts on `2[G] via the map λ : G → U(`2(G)) (unitary linear operators, that is, those

satisfying a∗a = aa∗ = 1) given by

λ(g)f(h) = f(g−1h).

Extend λ linearly to see that all of C[G] acts on `2(G) this way. Moreover, λ is a *-representation

of C[G] into B(`2(G)). Define the group Von Neumann algebra for G to be

L(G) := λ(C[G])
WOT

⊂ B(`2(G)).

For a von Neumann algebraM, its center is Z(M) :=M∩M′ ⊂ B(H). ThenM is a factor

if Z(M) = C1.
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Proposition 1.2.3.10. L(G) is a factor if and only if G is ICC, that is, the conjugacy class of every

g ∈ G (g 6= e) has infinite cardinality.

Proof. (⇒) (The easy direction) Suppose not, that is, there exists g ∈ G\{e} with a finite conju-

gacy class, say {g, h−1
1 gh1, h

−1
2 gh2, ..., h

−1
n ghn}. Then for every k ∈ G and every i ∈ {0, ..., n},

there exists j ∈ {0, ..., n} such that

h−1
i ghik = kh−1

j ghj,

where for convenience, we let h0 := e. To see this, apply k−1 to the left of h−1
i ghik. The resulting

element must be in the conjugacy class and moreover equal one of the elements listed.

Thus, the operator λ
(∑n

i=0 h
−1
i ghi

)
∈ L(G) commutes with all of L(G). Hence, L(G) is not

a factor.

(⇐) (The harder direction) Assume G is ICC. This direction has four major steps:

1) Let x ∈ L(G) and g ∈ G. I aim to show that 〈xδg−1h, δh〉 is constant with respect to h ∈ G.

Take a net xi = λ
(∑Ni

n=0 αi,nki,n

)
(for i ∈ I a directed set) that converges to x in the weak

operator topology. Then

〈xiδg−1e, δe〉 =

〈
λ

(
Ni∑
n=0

αi,nki,n

)
δg−1 , δe

〉
=

〈
Ni∑
n=0

αi,nδki,ng−1 , δe

〉
= αi,ng (where kng = g).

A similar calculation shows 〈xiδg−1h, δh〉 = αi,ng as well. Then we have equality in the limit, since

xi → x in the WOT.

2) Let cg(x) := the value of that constant map for g ∈ G and x ∈ L(G). Then

cg(x) = 〈xδg−1 , δe〉 = 〈xδe, δg〉,

from which it follows that xδe =
∑

g∈G cg(x)δg, since {δg}g∈G is an orthonormal basis for L2(G).

Moreover,
∑

g∈G |cg(x)|2 <∞.

22



3) From this point on, assume x ∈ Z(L(G)). Let g, h ∈ G. Then

ch−1gh(x) = 〈xδh−1g−1hk, δk〉 = 〈xλ(h−1)λ(g−1)λ(h)δk, δk〉

= 〈xλ(g−1)λ(h)δk, λ(h)δk〉 = 〈xλ(g−1)δhk, λ(h)δhk〉

= 〈xλ(g−1)δk, λ(h)δk〉 = 〈xδg−1k, λ(h)δk〉 = cg(x).

Since
∑

g∈G |cg(x)|2 <∞ from the previous step, we must have cg(x) = 0 whenever the conjugacy

class of g is infinite.

4) Since G is ICC, for every g ∈ G\{e} we then have

0 = cg(x) = 〈xδg−1h, δh〉

for every h ∈ G. In other words, xδg−1h does not contain a multiple of δh in its basis expansion for

any h ∈ G and g ∈ G\{e}. Hence, x must be a multiple of the identity, so L(G) is a factor.

Moreover, we have a trace on the group von Neumann algebras: the functional τ , given in

Example 1.2.1.5, is called the von Neumann trace. Note that it can be written in the form τ [x] =

〈xδe, δe〉.

Lemma 1.2.3.11. τ is a faithful, normal, tracial state on L(G).

Proof. That τ is a state is clear. Normality follows from the fact that τ is a vector state, i.e.

τ = 〈·δe, δe〉. For traciality, it suffices to check for λ(g), λ(h) ∈ C[G]:

τ [λ(g)λ(h)] = 〈λ(gh)δe, δe〉 = 〈δgh, δe〉 =


1 if gh = e

0 otherwise.

Since in a group gh = e is equivalent to hg = e, we see that τ [λ(g)λ(h)] = τ [λ(h)λ(g)].

Next, suppose x ∈ L(G) satisfies 0 = τ [x∗x] = 〈x∗xδe, δe〉 = 〈xδe, xδe〉. Thus, xδe = 0.

To show that x = 0, it suffices to check that 〈xδg, δh〉 = 0 for any g, h ∈ G (by linearity and
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continuity). Since τ is a trace,

〈xδg, δh〉 = 〈λ(h−1)xλ(g)δe, δe〉 = τ [λ(h−1)xλ(g)] = τ [λ(g)λ(h−1)x] = 〈λ(gh−1)xδe, δe〉 = 0.

In fact, τ is the only faithful, normal tracial state on L(G). We call any factor that has only

one such functional on it a type II1-factor. The rest of Murray and von Neumann’s classification

system has been omitted for brevity.

Next, we will consider the case G = Fn, the free group with n ∈ N ∪ {∞} generators, which

is defined as follows. Start with symbols {a1, ..., an}, along with their prescribed inverse symbols

{a−1
1 , ..., a−1

n } and a prescribed identity symbol e. Then Fn is defined to be the set of all words of

arbitrary length, consisting of any of the aforementioned symbols, that have been reduced using

the following relations:

aia
−1
i = a−1

i ai = e

aie = eai = ai

a−1
i e = ea−1

i = a−1
i .

The binary operation of concatenation immediately followed by reduction using the above relations

makes Fn a group. For n ≥ 2, it is ICC, so L(Fn) is a factor, called a free group factor.

It is known that Fn is (group) isomorphic to Fm if and only if n = m. However, the corre-

sponding question for L(Fn), the Free Group Factor Isomorphism Problem, remains unanswered.

The concept of free independence was introduced by Dan Virgil Voiculescu in the 1980s to, among

other things, gain a foothold into solving this mystery.

1.2.4 Free Probability and von Neumann Algebras

Voiculescu’s approach soon bore promising fruit. For instance, the following theorem shows

that, in principle, all information about a von Neumann algebra is contained in the joint distribution

24



of a generating set with respect to a faithful normal state. Moreover, this gives a plan of attack:

show that generating subsets of two von Neumann algebras have the same joint distributions.

Theorem 1.2.4.1. Let M = vN{a1, ..., an} be a von Neumann algebra generated by elements

a1, ..., an, with faithful normal state φ :M→ C, andN = vN{b1, ..., bn} be a von Neumann alge-

bra generated by elements b1, ..., bn, with faithful normal stateψ : N → C. If {a1, ..., an, a
∗
1, ..., a

∗
n}

and {b1, ..., bn, b
∗
1, ..., b

∗
n} have the same joint distributions with respect to φ and ψ, respectively,

then the map ai 7→ bi extends to a W*-isomorphism ofM and N .

The proof is simply observing that the GNS constructions ofM with respect to φ and N with

respect to ψ are isomorphic.

Returning to the free group factors, the free group is generated by elements a1, ..., an, so

λ(C[Fn]) is generated by λ(a1), ..., λ(an). Note that for each i, λ(xi) is a Haar unitary with

respect to τ , that is, each λ(xi) is a unitary operator such that τ [λ(xi)
n] = δn=0 for n ∈ Z.

Proposition 1.2.4.2. In the non-commutative *-probability space (λ(C[Fn]), τ), the generators

λ(a1), ..., λ(an) are freely independent.

Proof. Take polynomials Pi(λ(xu(i)), λ(x−1
u(i))) =

∑
k∈Z α

i
kλ(xku(i)) such that τ [Pi(λ(xu(i)), λ(x−1

u(i)))] =

0 for all i and u(1) 6= u(2) 6= ... 6= u(m).

First note that α(i)
0 = 0 for each Pi by assumption. Also

m∏
i=1

Pi(λ(xu(i)), λ(x−1
u(i))) =

∑
~k∈Zm

α1
k(1)...α

m
k(m)λ(x

k(1)
u(1)...x

k(m)
u(m)),

where all k(j) 6= 0. By the alternating property, the word xk(1)
u(1)...x

k(m)
u(m) never equals e. Hence, τ

applied to each term of the sum is zero.

Therefore, by Theorem 1.2.4.1, a von Neumann algebra is isomorphic to the free group factor

L(Fn) if we can find n Haar unitaries that are free with respect to a faithful normal state and

generate the von Neumann algebra. However, the next theorem shows that we can lower our
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standards a bit. Thanks to the Borel functional calculus given to us via the Spectral Theorem, we

can reshape the generators (to an extent) into generators with a wide variety of distributions.

Theorem 1.2.4.3. Let M = vN{x1, ..., xn} be a von Neumann algebra generated by elements

x1, ..., xn, with faithful normal state τ :M→ C. Assume that

• x1, ..., xn are freely independent with respect to τ , and

• each xi is normal and with non-atomic spectral measure with respect to τ .

ThenM' L(Fn).

Throughout the 1990s, other results of a similar spirit (by Voiculescu, Dykema, among others)

have been proven.

1.2.5 Free Products

Here, I will begin by describing in more detail the free product of groups G1, ..., Gn with

respective identity elements ei ∈ Gi. Any word g1...gk can be reduced by identifying xej = ejx =

x for x ∈ Gi and ej ∈ Gj for any i, j, and by identifying wxyz = w(xy)z if x, y ∈ Gi for the

same i. Through these, any word that is not just ei has a unique reduced form:

g1...gk, where gi ∈ Gu(i)\{eu(i)}, u(1) 6= u(2) 6= ... 6= u(k).

Define the free product ∗ni=1Gi of these groups to be the set of such reduced words in elements

of the Gi, with identity e, inverse

(g1...gk)
−1 = g−1

k ...g−1
1 ,

and group binary operation (product)

(g1...gk)(h1...h`) = reduced version of g1...gkh1...h`.
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For (A1, φ1), ..., (An, φn) noncommutative probability spaces, the following serves as an ana-

logue of the above construction. Denote A◦i = {a ∈ Ai |φi[a] = 0}. Similarly, for a in any NCPS

(A, φ), we write a◦ = a− φ[a] (its centered, or mean-zero, counterpart). Let

A = C1⊕
∞⊕
n=1

⊕
u(1)6=... 6=u(n)

A◦u(1) ⊗ ...⊗A◦u(n).

By abuse of notation, we will write a1a2...an := a1 ⊗ a2 ⊗ ...⊗ an. Define

(a1...ak)
∗ = a∗k...a

∗
1,

and multiplication, for ai ∈ A◦u(i), bi ∈ A◦v(i) where u(1) 6= ... 6= u(k) and v(1) 6= ... 6= v(`), by

(ak...a1)(b1...b`) = ak...a2(a1b1)◦b2...b` + φu(1)[a1b1]ak...a3(a2b2)◦b3...b` + ...

+ φu(1)[a1b1]...φu(j−1)[aj−1bj−1]ak...ajbj...b`,

where j ≤ min{k, `} is the first index such that u(j) 6= v(j) (if it exists).

On this ∗-algebraA, define the free product state φ := ∗ni=1φi by φ[1] = 1 and φ[a1a2...an] = 0

for all ai ∈ Au(i) such that u(1) 6= ... 6= u(k) and φu(i)[ai] = 0. The noncommutative probability

space (A, φ) is called the reduced free product. In other words, this is a NCPS (A, φ) such that

each (Ai, φi) embeds intoA as subalgebras in a way that theAi are freely independent with respect

to φ, and moreover, φ|Ai = φi.

1.2.5.1 Free Dimension

Here, we will use notation from [13]. For von Neumann algebras A and B with respective

traces τA and τB, let A
α
⊕ B

β
, for α, β ≥ 0 such that α + β = 1, denote the algebra A ⊕ B with

trace τ(a, b) = ατA(a) + βτB(b). This notation naturally extends to direct sum algebras with more

summands.

In 1992, in the course of investigations of the free group factor isomorphism problem, Ken
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Dykema defined the free dimension of *-algebras of the form

A = L(Fr)
γ0

⊕ C
γ1
⊕ C

γ2
⊕ ...⊕ C

γn

to be

fdim(A) := rγ2
0 +

∑
0≤i,j≤n
i 6=j

γiγj.

This includes the case fdim(L(Fr)) = r.

This is used to describe the free products of such algebras in the following way:

Proposition 1.2.5.1. (Proposition 2.4 from [13]) Let

A = L(Fr)
α0

⊕ C
α1

⊕ C
α2

⊕ ...⊕ C
αn

(n ≥ 0, r ≥ 1, α0 ≥ 0)

B = L(Fs)
β0

⊕ C
β1
⊕ C

β2
⊕ ...⊕ C

βm
(m ≥ 0, s ≥ 1, β0 ≥ 0),

where α0 + β0 > 0. Then their free product

A ∗ B ' L(Ft)
⊕
1≤i≤n

1≤j≤m

C
γij
,

where γij = max{αi + βj − 1, 0}, and t is chosen so that fdim(A ∗ B) = fdim(A) + fdim(B).

1.2.6 Combinatorics of Partitions and Free Cumulants

A partition π of a subset S ⊂ N is a collection of disjoint subsets of S (called blocks of π)

whose union equals S. We will use i π∼ j to say that i and j are in the same block of π. In this

paper, we will only be concerned with partitions of [n] := {1, 2, ..., n}.

Let NC(n) denote the noncrossing partitions over [n], that is, those partitions π such that there

are no i < j < k < ` such that i π∼ k and j π∼ ` unless all four are in the same block. If i ∈ [n] is

the first element of its block, we will call it an opening element, while the last of its block will be

called a closing element. If i is neither, it will be called a middle element.
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For distinct blocks V and W of a noncrossing partition π, V is said to be inner with respect to

W if oW < oV < cV < cW , where oV and oW are the opening elements of V and W , respectively,

while cV and cW are their closing elements. We will simply say a block is inner if it is inner with

respect to some block, and outer if it is not.

Finally, let Int(n) denote the interval partitions over [n], that is, those partitions π such that

whenever i < j and i π∼ j, we have i π∼ k for all i < k < j.

The free cumulants R[Xj(1), ..., Xj(k)] ∈ C of X1, ..., Xn ∈ (A, ψ) (with respect to ψ) are

defined inductively via the moment-cumulant formula

ψ[Xi(1)...Xi(k)] =
∑

π∈NC(n)

Rπ[Xi(1), ..., Xi(k)],

where

Rπ[X1, ..., Xk] =
∏
V ∈π

R[XV (1), ..., XV (|V |)].

Compare this to the classical moment-cumulant formula (which may, for the purposes of this

section, serve as a definition of classical cumulants K[Xj(1), ..., Xj(k)] ∈ C):

E[Xi(1)...Xi(k)] =
∑
π∈P(n)

Kπ[Xi(1), ..., Xi(k)],

where P(n) denotes the set of all partitions of [n] and

Kπ[X1, ..., Xk] =
∏
V ∈π

K[XV (1), ..., XV (|V |)].

The appearance of non-crossing partitions in the formula makes sense in light of the following

proposition. There is a similar result for the classical setting as well.

Proposition 1.2.6.1. (Speicher) Subalgebras A1, ...,Ak ⊂ A are free if and only if their mixed

free cumulants (that is, free cumulants of elements of more than one Ai) are zero.

To prove this, we need a better understanding of the free cumulants.
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Theorem 1.2.6.2. Let n1, ..., nr ∈ Z+ such that n = n1 + ... + nr. Take a1, ..., an ∈ (A, φ) a

NCPS. Let

A1 = a1...an1 , A2 = an1+1...an1+n2 , ..., Ar = an1+...+nr−1+1...an.

Then

Rr[A1, ..., Ar] =
∑

π∈NC(n)

π∨σ=1̂n

Rπ[a1, ..., an],

where σ is the partition whose blocks are (1, ..., n1), (n1 + 1, ..., n1 + n2), ..., (n1 + ... + nr−1 +

1, ..., an), and ∨ denotes the join, whose blocks are defined by the equivalence relation on [n]

generated by those of π and σ.

Proof. (of Proposition 1.2.6.1)

(⇐) For n ≥ 2, take ai ∈ Aj(i) such that j(1) 6= j(2) 6= ... 6= j(m) and φ[ai] = 0. We need to

show that φ[a1a2...an] = 0. Then

φ[a1a2...an] =
∑

π∈NC(n)

Rφ[a1, ..., an] =
∑

π∈NCns(n)

Rφ[a1, ..., an],

where the sum is taken over all non-crossing partitions with no singletons since Rφ[ai] = φ[a1] =

0. Each of the remaining partitions has a block containing a pair of consecutive numbers, so the

cumulant term corresponding to the block is zero. Hence, the entire sum is zero.

(⇒)

For this, we need to use the following lemma: Every cumulantR[a1, ..., an] = 0 that has ai = 1

for some i. By multilinearity ofR and the lemma, without loss of generality, we can take ai ∈ Au(i)

such that φ[ai] = 0 for all i.

For n = 2, the mixed assumption implies u(1) 6= u(2), so by freeness,

R[a1, a2] = φ[a1a2] = φ[a1]φ[a2].

30



Next, group each u(i) so that

u(1) =... = u(v(1))

u(v(1) + 1) =... = u(v(2))

u(v(j − 1) + 1) =... = u(v(j)),

where u(v(1)) 6= u(v(2)) 6= ... 6= u(v(n)). Then denote

A1 = a1...av(1), A2 = av(1)+1...av(2), ..., Aj = av(j−1)+1...av(j).

By the induction hypothesis, R[A1, A2, ..., Aj] = 0 since j < n. But by Theorem 1.2.6.2 this

also equals ∑
π∨σ=1̂n

Rπ[a1, ..., an]

for some σ ∈ Int(n), σ 6= 1̂n. Take π 6= 1̂n. By the induction hypothesis, if π contributes a nonzero

term to the sum, then all ai in the same block of π must be in the same subalgebra. Also, by

construction, the same applies to σ. So π∨σ = 1̂n, so all a1, ..., an must be in the same subalgebra,

a contradiction. Hence, all terms corresponding to π 6= 1̂n are zero, so Rn[a1, ..., an] = 0 as

well.

The analogous Boolean cumulants B[Xj(1), ..., Xj(k)] ∈ C are defined in almost exactly the

same manner as the free case:

ψ[Xi(1), ..., Xi(k)] =
∑

π∈Int(n)

Bπ[Xi(1), ..., Xi(k)],

where

Bπ[X1, ..., Xk] =
∏
V ∈π

B[XV (1), ..., XV (|V |)].

As one can expect, Boolean independence is equivalent to the vanishing of mixed Boolean cumu-
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lants.

Moreover, Belinschi and Nica [14] showed the following relation between Boolean and free

cumulants:

Theorem 1.2.6.3.

B[X1, ..., Xn] =
∑

π∈ÑC(n)

Rπ[X1, ..., Xn]

where ÑC(n) = {π ∈ NC(n)|1 π∼ n} (called the set of irreducible non-crossing partitions).

To see this, observe that the restriction of π ∈ NC(n) to each block of the smallest σ ∈ Int(n)

such that π ≤ σ connects the minimum and maximum of that block.

1.2.6.1 New Partial Order on NC(n)

Let� denote a partial order on NC(n) defined by

σ � π ⇔ σ ≤ π and ∀V ∈ π, min(V )
σ∼ max(V ),

where ≤ denotes the usual partial order (reverse refinement) on the set of all partitions of [n]:

σ ≤ π ⇔ ∀B ∈ σ, ∃C ∈ π such that B ⊆ C.

Remark 2.14 in the same work [14] gives the following:

Lemma 1.2.6.4. For σ ∈ NC(n),

{π ∈ NC(n) : σ � π} ' {S ⊂ σ : S contains the outer blocks of σ} =: Sσ.

The bijection is given by

π = {B1, ..., Bk} 7→ {o(σ|B1), o(σ|B2), ..., o(σ|Bk)},

where o(σ|Bi) denotes the unique (by the partial order) outer block of the partition σ|Vi .
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1.2.6.2 The Free Central Limit Theorem

In classical probability, the Gaussian (normal) distribution plays many important roles. Its

counterpart in free probability is Wigner’s semi-circular distribution with variance t > 0, defined

via the density

dµ(x) =
1

2πt

√
4t− x21[−2

√
t,2
√
t]dx.

In free probability, moments and free cumulants uniquely determine a distribution, so those num-

bers, respectively, for semi-circular distributions are

m2n = tnCn

m2n+1 = 0 for all n

R2 = m2 = t

Rn = 0 for n 6= 2,

where Cn = 1
n+1

2n

n

 is the nth Catalan number.

The following is not only an analogue of the Central Limit Theorem in free probability, but a

natural way to justify giving semi-circular distributions the title of “free analogue of normal vari-

ables”. Moreover, this side excursion into Speicher’s combinatorial proof illustrates his motivation

behind the free cumulants.

Theorem 1.2.6.5. (Free Central Limit Theorem) If {Xk}k∈N ⊂ (A, φ) is a sequence of freely

independent, identically distributed random variables with common mean and variance

φ[Xi] = 0, φ[X2
i ] = t, respectively, then

Sk :=
X1 + ...+Xk√

k

converges in distribution to the semi-circular distribution with mean 0 and variance t.
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Proof. First, we compute the nth moment of Sk:

φ[Snk ] =
1

kn/2

∑
r:[n]→[k]

φ[xr(1)...xr(n)]. (1.2)

For a multi-index i = (i1, ..., in), define its kernel, keri, to be the partition of [n] whose blocks

are defined by

k and ` are in the same block ↔ ik = i`.

Then we have this lemma: If keri = kerj, then φ[xi(1)...xi(n)] = φ[xj(1)...xj(n)]. This follows

from free independence and the assumption of identical distribution of the variables. As a conse-

quence of the lemma, we may define φ[π] to be the common value of φ[xi(1)...xi(n)] for all i with

keri = π ∈ P(n). Then (1.2) simplifies to

φ[Snk ] =
1

kn/2

∑
π∈P(n)

φ[π] · |{i : [n]→ [k]| ker i = π}|. (1.3)

We have

|{i : [n]→ [k]| ker i = π}| = k(k − 1)...(k −#(π) + 1)

(where #(π) is the number of blocks in π), since we have k choices for the first block, k − 1

choices for the second, and so on. Thus, 1.3 simplifies to

φ[Snk ] =
1

kn/2

∑
π∈P(n)

φ[π]k(k − 1)...(k −#(π) + 1). (1.4)

Note that the number of terms in the sum no longer depends on k, so we are in position to take

the limit as k →∞. First, note that

k(k − 1)...(k −#(π) + 1) ∼ k#(π) as k →∞.

Next, if π has a singleton block, then we have φ[π] = 0, due to freeness and the fact that all Xi
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have mean zero, since φ[π] will be the product of φ[Xi] (for some i) and other moments.

The remaining terms correspond to partitions with blocks of size at least 2, so they can have at

most n/2 blocks. Taking the limit of these terms, we get

lim
k→∞

k#(π)

kn/2
=


1, if #(π) = n/2,

0, if #(π) < n/2.

Hence, the only partitions with (potentially) nonzero terms in the sum are the pairings of [n].

Note that we have also proven that odd moments are zero in the limit. We can rewrite 1.4 as

φ[Snk ] =
∑

π∈P2(n)

φ[π]. (1.5)

Due to free independence, φ[π] = tn if the pairing π is non-crossing, and 0 if not. Hence,

lim
k→∞

φ[S2n
k ] = tn|NC2(2n)|.

|NC2(2n)| is known to be the nth Catalan number Cn = 1
n+1

2n

n

. Hence, Sk converges in

distribution to a semi-circular element with mean zero and variance t.

1.2.7 Free Additive Convolutions

In classical probability, the distribution of X+Y for X and Y independent is obtained through

convolution of their density functions fX and fY (provided they are absolutely continuous). The

analogous construction, the free additive convolution for X and Y freely independent, is con-

structed via the corresponding spectral measures µ and ν (with respect to state φ) for the distribu-

tions of X and Y , respectively; this approach also works for measures with atomic components.

The first step in computing their free convolution, denoted µ� ν, is the following.

Definition 1.2.7.1. Given corresponding probability measure µ to a random variableX , its Cauchy
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transform is

Gµ(z) =

∫
R

1

z − t
dµ(t).

The integral converges to an analytic function on the upper half-plane C+, with range contained

in the lower half-plane C−.

The following two propositions allow us to recover the probability measure µ from its Cauchy

transform. These versions of the Stieltjes inversion formula are from [15].

Theorem 1.2.7.2. (Stieltjes Inversion Formula) If µ is a probability measure on R and Gµ is its

Cauchy transform, then for a < b we have:

µ((a, b)) = lim
y→0+

−1

π

∫ b

a

=Gµ(x+ iy)dx− 1

2
µ({a, b}),

where x+ iy is the standard form of a complex number.

Moreover, if µ and ν are probability measures such that Gµ = Gν , then µ = ν.

Proposition 1.2.7.3. If µ is a probability measure on R and Gµ is its Cauchy transform, then for

all a ∈ R,

µ({a}) = lim
]z→a

(z − a)G(z),

where we take the non-tangental limit of (z − a)Gµ(z), that is, for f : C+ → C and a ∈ R,

lim]z→a f(z) = b if for every θ > 0, limz→a f(z) = b when z is restricted to the cone {x+ iy|y >

0 and |x− a| < θy} ⊂ C+.

Definition 1.2.7.4. The corresponding R-transformRµ(z) of µ is defined by the relationGµ

(
Rµ(z) + 1

z

)
=

z.

Then for X and Y freely independent (with corresponding probability measures µ and ν, re-

spectively), we have

Rµ�ν(z) = Rµ(z) +Rν(z). (1.6)

This gives a clear approach for computing the free additive convolutions of two free variables.
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First, find their Cauchy transforms, then their R-transforms, add them together, then reverse the

process.

Of great interest are the free additive convolution powers, that is, measures µ�n := µ�...�µ (n

times). Unlike the classical setting, the convolution powers µ�t where t > 1 is not necessarily an

integer, a construction introduced by Nica and Speicher ([16]), can be defined for any distribution.

To begin, let x ∈ (A, φ) (a noncommutative probability space) with distribution µ. Choose a

projection p (p = p2 = p∗) that is freely independent from it, with φ[p] = 1
t
. Then we have the

compressed noncommutative probability space

(
At, φ̃

)
=

(
pAp, 1

t
φ|pAp

)
,

and pxp has distribution µ�t, where Rµ�t(z) = tRµ(z). The multivariable case is done in a similar

fashion, with the same relation applying to their joint distribution.

An equivalent form of the R-transform is through the free cumulant generating function:

Proposition 1.2.7.5. Let Rµ
n denote the nth free cumulant of X (with distribution µ). Then R(z) =

C(z)−1
z

=
∑∞

n=0R
µ
n+1z

n, where C(z) is the free cumulant generating function for X . So, we

can identify the tth convolution power of a joint distribution µ through the relation Rµ�t

n = tRµ
n

between free cumulants.

We conclude this section with the Boolean counterparts of the above.

Definition 1.2.7.6. For X, Y ∈ (A, φ) Boolean independent with distributions µ and ν, respec-

tively, then the distribution of X + Y is denoted X ] Y , their Boolean (additive) convolution.

We can similarly identify the tth Boolean convolution power of µ, denoted µ]t, by the relation

Bµ]t
n = tBµ

n between Boolean cumulants. For brevity, we take this relation as the definition.

Lemma 1.2.7.7. Let µ be a probability measure on R. Then µ and µ]t have the same support for

their absolutely continuous parts.
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Proof. Denote G(z) = Gµ(z) and Gt(z) = Gµ]t(z). Then

1

Gt(z)
− z = t

(
1

G(z)
− z
)
.

Thus

Gt(z) =
1

z + t
(

1
G(z)
− z
) =

G(z)

(1− t)zG(z) + t
. (1.7)

Therefore

=Gt(z) =
=(G(z)((1− t)z̄ ¯G(z) + t))

|(1− t)zG(z) + t|2
.

Now taking z real, we get

=Gt(x) =
=G(x)((1− t)x<G(x) + t) + <G(x)(1− t)x=G(x)

|(1− t)xG(x) + t|2

=
2(1− t)x<G(x) + t

|(1− t)xG(x) + t|2
=G(x)

So except at the special points where (1 − t)xG(x) + t = 0, if =G(x) = 0 then =Gt(x) = 0. By

replacing t with 1/t, we obtain the opposite relation.

1.2.8 Conditionally Free Independence

In 1991, Marek Bozejko and Roland Speicher generalized these ideas to conditionally free

independence ([17]), whose construction depends on a relationship between the two states which

resembles absolute continuity from measure theory. Several von Neumann algebras have been

constructed as the similarly defined conditionally free product, and for some, there exist clear

relationships with their usual free products.

Definition 1.2.8.1. To begin, let (A, φ) be a noncommutative probability space, with a second

vector state ψ. Subalgebras A1, ...,An ⊂ A are conditionally freely independent with respect to φ
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and ψ if, whenever ui ∈ Aj(i) for j(1) 6= j(2) 6= ... 6= j(m) with ψ[ui] = 0 for all i, we have

φ[u1u2...um] = φ[u1]φ[u2]...φ[um], and

ψ[u1u2...um] = 0.

In other words, the φ-mean of an alternating product of ψ-mean zero variables is just the product

of the variables’ respective φ-means, in addition to free independence with respect to ψ.

Compare this to the usual notion of free independence. This definition is also reminiscent of

absolute continuity of measures (µ is absolutely continuous with respect to ν if for every mea-

surable set A, ν(A) = 0 implies µ(A) = 0). Moreover, for (B, φ) a non-unital *-probability

space,A = C⊕B its unitization, and φ̃ the canonical extension of φ toA, and the state ψ onA by

ψ[λ1+b] = λ, we have all elements ofA are free with respect to ψ, and {λ1 + b1, . . . , λn + bn} are

conditionally free with respect to (φ̃, ψ) if and only if {b1, . . . , bn} ⊂ B are Boolean independent

in (B, φ).

Lemma 1.2.8.2. Let (A,Φ,Ψ) be a unital two-state probability space, and {Ai} non-unital *-

subalgebras.

a. If the Ai’s are free with respect to ψ, then so are the subalgebras generated by Ai and 1.

b. If theAi’s are conditionally free with respect to (φ, ψ), then so are the subalgebras generated

by Ai and 1.

Proof. Part (a) follows from Proposition 1.2.6.1, as well as the lemma used in its proof (all sub-

algebras are free from C1). For part (b), it follows directly from the definition that scalars are

conditionally free from any other elements. So RΦt,Ψt [a1, . . . , an] = 0 if any of the ai is a scalar.

The result follows.

The conditionally free product is constructed in a similar spirit to conditional freeness, and in

a similar fashion to the usual free product (see Subsection 1.2.5):
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Definition 1.2.8.3. For (A1, φ1, ψn), ..., (An, φn, ψn) noncommutative probability spaces with two

states each, denote A◦i = {a ∈ Ai |ψi[a] = 0}, and let

A = C1⊕
∞⊕
n=1

⊕
u(1)6=... 6=u(n)

A◦u(1) ⊗ ...⊗A◦u(n).

On this ∗-algebra A, define the conditionally free product state φ := ∗ni=1(φi, ψi) by φ[1] = 1 and

φ[a1a2...an] = φi(1)[a1]...φi(n)[an] for all ai ∈ Au(i) such that u(1) 6= ... 6= u(k) and ψu(i)[ai] = 0.

Define a second state ψ as the usual free product state of the ψi. The noncommutative probability

space (A, φ, ψ) is called the conditionally free product. Note that if φi = ψi for all i, we get the

usual free product.

In [17], the authors describe the corresponding additive convolution and examine it from both

a combinatorial point of view (conditionally free cumulants) and an analytic point of view (the

R-transform).

Definition 1.2.8.4. The conditionally free convolution of X and Y conditionally free is defined

in a similar way to the usual free convolution: as the φ-distribution of X + Y , where φ is the

conditionally free product state. To be more precise, let µ1, µ2, ν1, and ν2 be compactly supported

measures on R, which can be identified with a state on the ∗-algebra C〈X〉, via, for instance

µ1(Xn) =

∫
tndµ1(t).

Assume µ1 is the distribution of X , µ2 is the distribution of Y , and let φ = (µ1, ν1) ∗ (µ2, ν2) be

their conditionally free product state on C〈X〉 ∗C〈Y 〉 = C〈X, Y 〉 (noncommuting polynomials in

X and Y ). The conditionally free convolution

µ = (µ1, ν1)� (µ2, ν2)

is the compactly supported measure on R that corresponds to the φ-distribution of X+Y . We also

construct ν = ν1�ν2 as the usual free convolution. This pair is denoted (µ, ν) = (µ1, ν1)�(µ2, ν2).
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Definition 1.2.8.5. The corresponding conditionally free cumulant functionalsRφ,ψ are recursively

defined

φ[X1, ..., Xn] =
∑

π∈NC(n)

 ∏
Vi∈π
Vi inner

Rψ
Vi

[X ~Vi
]


 ∏

Vj∈π
Vj outer

Rφ,ψ
Vj

[X ~Vj
]

 , (1.8)

where Rψ denotes the usual free cumulant functionals with respect to ψ.

Then, in a similar fashion to free convolutions, the authors prove (using an induction argument)

the conditionally free convolution (µ, ν) = (µ1, ν1) � (µ2, ν2) can be described entirely in terms

of the free and conditionally free cumulants of the two distributions:

Rν
n = Rν1

n +Rν2
n

and

Rµ,ν
n = Rµ1,ν1

n +Rµ2,ν2
n .

1.2.9 Operator-Valued Free Probability

In 1998, Roland Speicher introduced operator-valued distributions, with motivation from ran-

dom (block) matrices ([18]). This section is primarily a reference to make the comparisons be-

tween our operator-valued objects and Speicher’s more reader-friendly (for example, 2.2.4.1 is

an “operator-valued free cumulant” of sorts, but not quite Speicher’s definition). Therefore, this

section will only contain the basic concepts.

Definition 1.2.9.1. Let A be a C*-algebra, with B ⊂ A a sub-C*-algebra. A conditional expecta-

tion E : A → B is a map that satisfies

• a ≥ 0 implies E[a] ≥ 0 (positivity), and

• E[b1ab2] = b1E[a]b2 (B−bimodule property).

Then (A,B,E) is a B-valued non-commutative probability space.
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Example 1.2.9.2. The definition above was intended to generalize the following example to non-

commutative operator algebras. Let (X,Σ, P ) be a probability measure space, with a sub-σ-

algebra Θ ⊂ Σ. Then let A be the Σ-measurable functions and B be the Θ-measurable functions.

The Radon-Nikodym theorem gives a conditional expectation E : A → B.

Distributions are not defined on non-commuting polynomials of scalar coefficients, but B-

valued coefficients. To be more precise, this space is the span of b0xb1x...xbn, for n ≥ 0, bi ∈ B,

and x an indeterminate that does not commute with B. This space is denoted B〈x〉.

Definition 1.2.9.3. For a variable X ∈ (A,E) (B-valued), its distribution is the B-valued map

µX : B〈x〉 → B defined by

µX [b0xb1x...xbn] = E[b0Xb1X...Xbn] = b0E[Xb1X...X]bn.

Joint distributions of X1, ..., Xn are defined similarly, where the Xi are in place of each X , in

index order.

Definition 1.2.9.4. Inductively define theB-valued free cumulant mapsR[b0X1b1, X2b2, ..., Xnbn] =

b0R[X1b1, X2b2, ..., Xn]bn by

E[b0X1b1X2b2...Xnbn] =
∑

π∈NC(n)

Rπ[b0X1b1, X2b2, ..., Xnbn],

whereRπ uses the nesting structure on NC(n) (cumulants corresponding to inner blocks are nested

inside the cumulants of the outer blocks), as demonstrated in the following example.

Example 1.2.9.5. For π = {(15)(234)(6)}, we have

Rπ[b0X1b1, X2b2, X3b3, X4b4, X5b5, X6b6] = b0R[X1b1R[X2b2, X3b3, X4]b4X5]b5R[X6]b6,

where we use the bimodule property of R it inherited from E.
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Definition 1.2.9.6. SubalgbrasA1, ...,An ⊂ (A,E) (B-valued) are freely independent (with amal-

gamation) over B is whenever

• u(1) 6= u(2), u(2) 6= u(3), ..., u(k − 1) 6= u(k) and

• ai ∈ Au(i) with E[ai] = 0,

then E[a1...ak] = 0. As usual, elements are called freely independent (with amalgamation) if the

subalgebras generated by them are.

Theorem 1.2.9.7. Elements are freely independent (with amalgamation) over B if and only if their

B-valued free cumulants vanish.

1.2.10 Combinatorics of Lattice Paths

Our conventions for lattice paths are as follows. These are piece-wise linear paths whose

vertices are in (N ∪ {0})× (N ∪ {0}). The second coordinate will be called the height. Each path

will start at (0, 0) and will never go below a height of 0. Each step that we will consider is one of

the following:

• a rising step: one unit to the right, one unit up,

• a flat step: one unit to the right, no height change,

• a falling step: one unit to the right, one unit down.

When we refer to a step’s height, we mean its starting height, not ending.

Definition 1.2.10.1. Dyck paths are lattice paths that start and end at height 0, and consist of only

rising and falling steps as defined above.

Also denote by NC2(2n) the set of non-crossing pairings, partitions with only blocks of size 2.

Lemma 1.2.10.2. There is a bijection between the set of Dyck paths with 2n steps and NC2(2n).
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Proof. Rising steps correspond to opening elements of blocks, falling steps to closing elements.

Definition 1.2.10.3. Motzkin paths are lattice paths starting and ending at height 0, consisting of

rising, falling, and flat steps as defined above.

Lemma 1.2.10.4. Assign to each flat step a label s or m, except those at height 0, which may only

have the s label. There is a bijection between the set of such labeled Motzkin path with n steps and

NC(n).

Proof. The proof is the same, but with m-flat steps corresponding to middle elements of a block,

and s-flat steps corresponding to singleton blocks.

Remark 1.2.10.5. For a partition π, the number of open blocks at position i is

|{V ∈ π | min(V ) < i ≤ max(V )}|.

Then through either of the above bijections, the height of a path at step i corresponds to the

number of open blocks at i.

1.2.11 Fock Spaces

Introduced by V.A. Fock in 1932 as the quantum states space of multiple identical particles,

Fock spaces have since seen use in a plethora of fields, including quantum mechanics, represen-

tation theory, combinatorics, and operator algebras. Our particular interest in Fock spaces stems

from the potential to represent many classes of distributions via certain bounded operators (non-

commuting random variables) on a Fock space. Fock spaces are appealing for this due to the nice

combinatorial interpretations of those operators’ distributions.

Remark 1.2.11.1. Here, I must clarify that by distribution, I am referring to a state on C〈X1, ..., Xn〉,

and by representation, I mean in the sense of Definition 1.2.2.2, in which a polynomial passes to a

state of another *-algebra by replacing the indeterminates with respective elements of a family of
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non-commuting random variables. Thus, this representation question asks whether or not a given

state on C〈X1, ..., Xn〉 can be reconstructed by pulling back the state of another *-probability space

to C〈X1, ..., Xn〉.

Construction 1.2.11.2. (Full Fock Space) LetH be a Hilbert space with inner product 〈·, ·〉. The

(algebraic) Fock space ofH is

Falg(H) =
∞⊕
n=0

H⊗n,

whereH⊗0 := CΩ, the span of the vacuum vector.

Define the inner product 〈·, ·〉F by linear extension of

〈f1 ⊗ ...⊗ fn, g1 ⊗ ...⊗ gk〉F = δn=k

n∏
i=1

〈fi, gi〉.

Note that on eachH⊗n, this is just the canonical tensor inner product. We simply require that each

of those subspaces for different n be orthogonal.

Let F(H) := denote the completion of Falg(H) with respect to this inner product.

On F , for f ∈ HR and g1, ..., gn ∈ H, define the following operators:

• The free creation operator is given by linear extension of

a+(f)Ω = f,

a+(f)(g1 ⊗ ...⊗ gn) = f ⊗ g1 ⊗ ...⊗ gn.

• The free annihilation operator is given by linear extension of

a−(f)Ω = 0,

a−(f)(g1 ⊗ ...⊗ gn) = 〈f, g1〉g2 ⊗ ...⊗ gn.

Lemma 1.2.11.3. Let X(f) = a+(f) + a−(f). This is bounded and self-adjoint under the inner
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product of F(H).

Proof. A quick calculation shows that a+(f) is bounded with operator norm ≤ ‖f‖. A second

calculation shows that its adjoint is a−(f).

Definition 1.2.11.4. OnB(F(H)), define the vacuum state Φ[A] = 〈AΩ,Ω〉. Then (Alg{X(f) | f ∈

H},Φ) is a *-probability space.

Now, we explore the distributions we can represent with this construction.

Proposition 1.2.11.5. For n even and f1, ..., fn ∈ H, we have

〈X(f1)...X(fn)Ω,Ω〉F =
∑

π∈NC2(n)

〈WM(π)Ω,Ω〉 =
∑

π∈NC2(n)

∏
V ∈π

〈fV (1), fV (2)〉 (1.9)

where WM(π) =
∏n

i=1 ai, and

ai =


a+(fi), if i is a closing element,

a−(fi), if i is an opening element.

All mixed moments for n odd are zero.

By Lemma 1.2.10.2, we can restate this in terms of weighted Dyck paths:

Corollary 1.2.11.6. For n even and f1, ..., fn ∈ H, we have

〈X(f1)...X(fn)Ω,Ω〉F =
∑

path∈Dyck(n)

〈WM(path)Ω,Ω〉 (1.10)

where WM(path) =
∏n

i=1 ai, and

ai =


a+(fi), if there is a falling step at i,

a−(fi), if there is an rising step at i.

All mixed moments for n odd are zero.
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Corollary 1.2.11.7. For f1, ..., fn ∈ H, all free cumulants are zero except

R[X(fi), X(fj)] = 〈fi, fj〉.

Hence, X(f) has a semi-circular distribution with variance ‖f‖2.

Corollary 1.2.11.8. If f1, ..., fn ∈ H are pairwise orthogonal, then X(f1), ..., X(fn) are freely

independent. In this case, these variables form a free semi-circular system.

Next, we can look at the distributions of the X(fi) from the perspective of orthogonal polyno-

mials in C〈X1, ..., Xn〉.

Definition 1.2.11.9. For f1, ..., fn ∈ HR, their Wick product (or Wick polynomial)W (f1, f2, ..., fn) ∈

B(F(H)) is defined recursively via

W (∅) = 1

W (f1) = X(f1)

W (f1, f2, ..., fn) = X(f1)W (f2, ..., fn)− 〈f2, f1〉W (f3, ..., fn).

Lemma 1.2.11.10. W (f1, ...fn) is the only operator in the *-algebra generated by {X(f) | f ∈

HR} with the property

W (f1, ...fn)Ω = f1 ⊗ ...⊗ fn.

To prove this, we need the following:

Lemma 1.2.11.11. Ω is separating for this *-algebra, i.e., the only operator X in the algebra such

that XΩ = 0 is X = 0.

Proof. Take X :=
∑N

i=1 X(f
(i)
1 )...X(f

(i)
n(i)) in the *-algebra, and assume XΩ = 0. Consider

XΩ =
M∑
j=0

gj,
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for some (possibly non-simple) tensors gj ∈ (H◦)⊗j , and where M := maxni (the length of the

longest word in X .)

Since XΩ = 0, we have gj = 0 for all j by orthogonality. In particular,

gM =
∑̀
k=1

f
(k`)
1 ⊗ ...⊗ f (k`)

M = 0,

where k` are such that nk` = M . This gives

GM :=
∑̀
k=1

X(f
(k`)
1 )...X(f

(k`)
M ) = 0.

Repeat this process for the longest tensors in XΩ−GMΩ to see that X ≡ 0.

Proof. (of Lemma 1.2.11.10)

The equation follows by induction via the recursion. Uniqueness follows from the previous

lemma.

Next, for f ∈ HR with ‖f‖2 = t, denote Wn(f) := W (f, ..., f) (n times). It satisfies the

recursion

Wn+1(f) = XWn(f)− tWn−1(f),

where X := X(f). These correspond to the polynomial recursion

Vn+1(x) = xVn(x)− tVn−1(x).

Compare to the Chebyshev polynomials of the second kind:

Un+1(x) = 2xUn(x)− Un−1(x).

Proposition 1.2.11.12. {Vn}n∈N are orthogonal polynomials with respect to the semi-circular dis-
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tribution µ with mean 0 and variance t, that is,

φ[Wm(f)∗Wn(f)] =

∫
R
Vn(x)Vm(x)dµ(x) = 0 for n 6= m.

Proof.

∫
R
Vn(f)Vm(f)dµ(x) = 〈Wn(f)Wm(f)Ω,Ω〉 = 〈Wm(f)Ω,Wn(f)Ω〉

= 〈f⊗n, f⊗m〉 =


0, if n 6= m

tn if n = m.

As we mentioned in the introduction, the three motivating constructions generalized the full

Fock space in two ways:

• They utilized a deformed inner product, via a bilinear map of some sort whose arguments

are adjacent components of the tensor (this map also appears in their respective annihilation

operators), and

• They included a third operator in X(f), which we denote a0(f), since it maps H⊗n to H⊗n

in each construction.
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2. The Primary Framework

2.1 The Primary Construction

Construction 2.1.0.1. To begin, let B be a unital *-algebra, equipped with star-linear maps φ :

B → C, γ : B → B, and Λ : B ⊗alg B → B such that φ is positive and faithful, and γ + φ is

completely positive. On the algebraic Fock space Falg(B),

CΩ⊕
∞⊕
n=1

B⊗n,

define the inner product by the linear extension of

〈u1 ⊗ . . .⊗ un, v1 ⊗ . . .⊗ vk〉γ,φ

= δn=kφ
[
v∗n(γ + φ)[v∗n−1(γ + φ)[. . . (γ + φ)[v∗1u1] . . .]un−1]un

]
. (2.1)

This inner product is positive semi-definite but, in many cases, will not be positive definite. In

that case, we would take the quotient space Falg(B)/N , where N is the subspace for which the

semi-norm induced by this inner product is zero. Denote the completion of this space by Fγ,φ(B).

For reasons that will be explained momentarily, we will assume the following relations through-

out:

φ[v∗Λ(b⊗ u)] = φ[Λ(b∗ ⊗ v)∗u], and γ[v∗Λ(b⊗ u)] = γ[Λ(b∗ ⊗ v)∗u], (2.2)

Remark 2.1.0.2. Instead of the map γ, it suffices to use a bilinear map 〈·, ·〉γ : B ⊗ B → B which

is star-linear in each argument and such that 〈·, ·〉γ + 〈·, ·〉φ is positive semi-definite.

Lemma 2.1.0.3. If for some t < 1, γ + tφ is still completely positive, then the inner product (2.1)

is non-degenerate.

50



Proof. For n ≥ 2, suppose

0 =

〈∑
i

u
(1)
i ⊗ . . .⊗ u

(n)
i ,
∑
i

u
(1)
i ⊗ . . .⊗ u

(n)
i

〉

=
∑
ij

φ
[
u

(n)∗
i (γ + φ)

[
...u

(2)∗
i (γ + φ)

[
u

(1)∗
i u

(1)
j

]
u

(2)
j ...

]
u

(n)
j

]
=
∑
ij

φ
[
u

(n)∗
i (γ + tφ)

[
...u

(2)∗
i (γ + tφ)

[
u

(1)∗
i u

(1)
j

]
u

(2)
j ...

]
u

(n)
j

]
+
∑
ij

(scalar multiples of products of multiple lesser tensor-power (γ, tφ)-inner products)

+ (1− t)n−1
∑
ij

φ
[
u

(1)∗
i u

(1)
j

]
...φ
[
u

(n)∗
i u

(n)
j

]
.

The first term is always nonnegative by complete positivity and Lemma 3.5.3 in [18]. The middle

terms are nonnegative for the same reasons plus the fact that the Schur product of positive matrices

is positive (namely, the matrices whose ijth entry is the γ, tφ-inner product of the ith tensor with

some terms omitted with the jth tensor with terms omitted from the same positions). The last

term is nonnegative by the Schur product property, and moreover, this sum is zero if and only if

the matrix whose ijth term is φ
[
u

(1)∗
i u

(1)
j

]
...φ
[
u

(n)∗
i u

(n)
j

]
is zero entrywise, which only occurs if

u
(1)
i ⊗ u

(2)
i ⊗ ...u

(n)
i = 0 since φ is faithful.

Next, for each b ∈ B, consider densely defined operators

a+(b)(u1 ⊗ . . .⊗ un) = b⊗ u1 ⊗ . . .⊗ un,

a−(b)(u1 ⊗ . . .⊗ un) = (γ + φ)[bu1]u2 ⊗ . . .⊗ un,

a−(b)(u1) = φ[bu1]Ω,

a0(b)(u1 ⊗ . . .⊗ un) = Λ(b⊗ u1)⊗ u2 ⊗ . . .⊗ un,

a−(b)(Ω) = a0(b)(Ω) = 0
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and

X(b) = a+(b) + a−(b) + a0(b).

These operators (and their products) are always defined on Falg(B).

Denote

Γalgγ,Λ(B, φ) = Alg(X(b) : b ∈ B) = Alg(X(b) : b ∈ Bsa)

and define on it the vacuum state A 7→ 〈AΩ,Ω〉. Our main objective with the first phase, and an

important component of the second, is to understand the distributions of the X(b) operators with

respect to the vacuum state.

Lemma 2.1.0.4. If X(b) is bounded with respect to the semi-norm over Falg(B), then it is well-

defined over Fγ,φ(B) and is also norm-bounded.

Proof. Boundedness implies norm-zero vectors map to norm-zero vectors, so this is an immediate

consequence of the linearity of the operators.

In Section 2.4, we will examine conditions under which these operators are bounded, provided

B is a C*-algebra. Let us set that question aside for now, and address conditions for X(b) to be

symmetric (self-adjoint if bounded).

Proposition 2.1.0.5. First,

〈
a+(b)u1 ⊗ ...⊗ un, v1 ⊗ ...⊗ vm

〉
γ,φ

=
〈
u1 ⊗ ...⊗ un, a−(b∗)v1 ⊗ ...⊗ vm

〉
γ,φ
.

By (2.2), we also have

〈
a0(b)u1 ⊗ ...⊗ un, v1 ⊗ ...⊗ vm

〉
γ,φ

=
〈
u1 ⊗ ...⊗ un, a0(b∗)v1 ⊗ ...⊗ vm

〉
γ,φ
.

In the case when Λ(b⊗ u) = Λ(b)u, for Λ : B → B, (2.2) simplifies to (Λ(b))∗ = Λ(b∗).

Moreover, for self-adjoint b, X(b) is symmetric.
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The proof is straightforward and so has been omitted.

Before I continue, I must highlight the three constructions which have inspired our own.

2.1.1 Example: Lenczewski, Sałapata (2007) [2]

Their construction is as follows: starting with H = L2(R+) under Lebesgue measure, the free

Fock space overH is

F(H) = CΩ⊕
∞⊕
n=1

H⊗n
(
' CΩ⊕

∞⊕
n=1

L2(Rn
+)

)
,

under the inner product defined in Section 1.10.

The authors define a weight function on R+ × R+ by

w(s, t) =


p if 0 < s < t,

q if 0 < t < s,

1 otherwise.

Example 2.1.1.1. Using the notation of our construction, they use the maps

γ[f ](s) =

∫
w(s, t)f(t)dt, φ[f ] =

∫
f(t)d(t), Λ ≡ 0.

to construct the operator X(f) = a+(f) + a−(f). The corresponding (γ, φ) inner product is

non-degenerate since w + 1⊗ 1 is invertible.

The authors showed that, with respect to the vacuum state, such operators represent the Kesten

distributions with parameters p and q, whose densities are

fp,q(x) =
1

π

√
2(p+ q)− x2

2− (2− p− q)x2
, −

√
2(p+ q) ≤ x ≤

√
2(p+ q).

For p = 0 and q = 1, you get the arcsine distribution as a familiar example.

Moreover, by taking the operator Λ(b ⊗ f)(x) = f(s)
∫ (

w(s, t) + δs=t
)
b(t) dt to construct
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a0(f), the operators X(ft) = a+(ft) + a0(ft) + a−(ft) with ft = χ[0,t) represent a (p, q)-

interpolation of the free Poisson process.

2.1.2 Example: Anshelevich (2007) [1]

Example 2.1.2.1. Their construction is as follows: begin withH = Rd with the usual orthonormal

basis e1, ..., ed. Then, again using our notation, they use the following maps (defined on the basis,

and linearly extended)

φ[ej] = 1, γ[ej] =
d∑
i=1

Cijei, Λ(ei ⊗ ej) =
d∑

k=1

Bk
ijek,

to construct the operator X(f) = a+(f) + a0(f) + a−(f). The natural embedding of Rd into

L2(R)+ relates this example to the previous one.

Under the vacuum state, the author showed that these operators represent the free Meixner

distributions, a large class which includes the (multi-variate versions of the) semicircular, free

Poisson (Marchenko–Pastur), Bernoulli, and free binomial distributions.

Here is a rigorous definition of the free Meixner class. For a state φ on R〈x1, ..., xd〉, a monic

orthogonal polynomial system is a subset P of R〈x1, ..., xd〉 consisting of monic polynomials such

that

• for any multi-index u, there exists Pu ∈ P with leading term xu(1)...xu(|u|),

• φ
[
(Pu)∗Pv

]
= 0 for u 6= v.

Anshelevich defined a free Meixner distribution to be a state φ on R〈x1, ..., xd〉 with a MOPS

such that φ[xi] = 0 for all i, Rφ[xi, xj] = δi=j , and φ can be represented as the vacuum state on this

Fock space construction for some symmetric operators Ti := Λ(ei⊗·) and a diagonal non-negative

matrix C with (Ti ⊗ I)C = C(Ti ⊗ I).

2.1.3 Example: Bożejko, Lytvynov (2009) [3], [4]

The authors begin with H = L2(X, σ) where X is locally compact, second countable, Haus-

dorff, and contains no isolated points, and σ is a non-atomic Radon measure on (X,Borel(X)).
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Example 2.1.3.1. Assume, for our purposes, that X is compact, and consider B = L∞(X, σ).

Then take η, λ ∈ B such that η is positive (i.e. non-negative a.e.) and λ is self-adjoint (i.e. real-

valued a.e.). Then with the maps

γ[f ] = ηf, Λ(b⊗ f) = λbf, φ[f ] =

∫
X

f(t)dσ(t),

the authors define X(f) = a+(f) + a−(f) + a0(f) for f : X → R continuous and compactly

supported. They proved that these operators also represent the free Meixner distributions. Note

that the (γ, φ) inner product here is non-degenerate if η is invertible.

This setting generalizes somewhat to a general ∗-algebra B if we simply assume that η and λ

are central elements of B, that is, η and λ commute with all of B.

2.1.4 Other Examples

Some slight generalizations of the Λ in Example 2.1.1.1 are

Λ(b⊗ f)(t) =

∫
λ(s, x, y)b(x)f(y) dx dy or Λ(b⊗ f)(x) = f(s)

∫
λ(s, t)b(t) dt. (2.3)

In the first case, conditions on Λ in Proposition 2.1.0.5 correspond to λ(s, x, y) = λ(y, x, s) and

w(s, t)λ(t, x, y) = w(s, y)λ(t, x, y), (2.4)

i.e. λ(t, x, y) 6= 0 implies w(s, t) = w(s, y) for all s. In the second case, these conditions

correspond to λ real-valued.

The final example I will discuss is relatively simple, but important, since it includes the setting

for our second phase.

Example 2.1.4.1. Choose B, φ, Λ to be general, but let γ = ψ be scalar-valued. Then the inner
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product simplifies to

〈f1 ⊗ . . .⊗ fn, g1 ⊗ . . .⊗ gk〉γ,φ = δn=kφ[g∗nfn]
n−1∏
i=1

(ψ + φ)[g∗i fi].

Note that if B = L∞([0, 1]) and we are in the setting of Example 2.1.1.1, for absolutely continuous

measures this corresponds to w(u, v) = w(v). Then condition (2.4) implies that for non-zero λ, w

is constant, so γ = ψ is a multiple of φ.

2.2 Distributions Through Moments, Free Cumulants

2.2.1 Moments

In the moment and Boolean cumulant formulas below, given π ∈ NC(n) and u1, ..., un ∈ B,

we will assign the following weight operator on Falg(B):

WM(π) =
n∏
i=1

ai(ui),

where

ai =


a+, if i is a closing element,

a−, if i is an opening element,

a0, if i is a middle element.

Proposition 2.2.1.1. Given u1, ..., un ∈ B, we have the following mixed moment formula:

〈X(u1)...X(un)Ω,Ω〉 =
∑

π∈NCns(n)

〈WM(π)Ω,Ω〉γ,φ, (2.5)

if n ≥ 2, where NCns(n) is the set of noncrossing partitions of [n] with no singleton blocks. If

n = 1, the moment is zero.

Proof. By the definition of X(ui) and linearity, the product of the X(ui) is a sum in which each

term is a product of creation, annihilation, and a0 operators, with their respective functions always
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appearing in increasing index order; that is, each takes the form a1(u1)...an(un), where ai is either

a+, a−, or a0.

Consider a1(u1)...an(un)Ω. If there exists i such that ai = a− and

|{j > i : aj = a−}| ≥ |{j > i : aj = a+}|,

this term will be zero. When taking the inner product of the term and Ω, the product will be zero

unless the term equals a multiple of Ω, a case which only holds when

|{j : aj = a−}| = |{j : aj = a+}|.

This implies that the only terms which contribute to the sum are the inner products of operator

products such that there are an equal number of creators and annihilators and when going from

right to left, at no point will the number of annihilators exceed the number of creators. Finally,

any product whose right-to-left evaluation will involve applying a0 to a scalar of Ω will be zero by

definition. Viewing this behavior through the well-known correspondence between non-crossing

partitions and Motzkin paths (where the height at any point on the path indicates the number of

opened, but not closed, blocks when moving right to left), through the weights given above, it’s

clear that the only possibly nonzero terms of the sum are those induced by noncrossing, nonsingle-

ton partitions of [n].

The original statement of the proposition was in terms of Motzkin paths, and though the proof

is essentially the same, it seems more intuitive, in the author’s opinion. We include it here for the

interested reader:

Corollary 2.2.1.2. Given u1, ..., un ∈ B, we have the following mixed moment formula:

〈X(u1)...X(un)Ω,Ω〉 =
∑

path∈MP ′(n)

〈WM(path)Ω,Ω〉γ,φ, (2.6)
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if n ≥ 2, where MP’(n) is the set of Motzkin paths of length n with no flat steps at height zero, and

WM(path) =
n∏
i=1

ai(ui),

where

ai =


a+, if there is a falling step at i,

a−, if there is a rising at i,

a0, if there is a flat step at i.

If n = 1, the moment is zero.

Equivalence of this and Proposition 2.2.1.1 immediately follows from the bijection in 1.2.10.4.

The proof of the formula in terms of paths (from scratch) is the same as before, except we have

a more visual description of what is happening:

• Paths are followed from right to left, though the terms rising and falling will still be applied

as if they were drawn from left to right, for consistency.

• Whenever a+ is applied, take a falling step (since we are going right to left, this is one step

left, and one step up).

• Whenever a− is applied, take a rising step (this is one step left, and one step down).

• Whenever a0 is applied, take a flat step.

• The key intuition is that the height at each step i corresponds to the length of the tensor after

all X(uj) for j > i have been applied.

2.2.2 Boolean Cumulants

Definition 2.2.2.1. Recall that ÑC(n) = {π ∈ NC(n)|1 π∼ n}. Similarly, let

ÑCns(n) = {π ∈ NC(n)|1 π∼ n and π has no singleton blocks}.
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Lemma 2.2.2.2. For n ≥ 2, given u1, ..., un ∈ B, we have the following mixed Boolean cumulant

formula:

Bn[X(u1), ..., X(un)] =
∑

π∈ÑCns(n)

〈WM(π)Ω,Ω〉γ,φ, (2.7)

and for n = 1, the cumulant is zero.

Proof. n = 1 is clear. Assume the result holds for all natural numbers less than some n, and take

u1, ..., un ∈ B. By Proposition 2.2.1.1, we have

∑
π∈Int(n)

Bπ[X(u1), ..., X(un)] = 〈X(u1)...X(un)Ω,Ω〉 =
∑

π∈NCns(n)

〈WM(π)Ω,Ω〉γ,φ.

For convenience, denote by NCns,mo(n) the noncrossing, no-singleton partitions of [n] that

have more than one outer block. After isolating the nth cumulant (corresponding to the partition

1̂n consisting of a single block), we get

Bn[X(u1), ..., X(un)] =
∑

π∈NCns(n)

〈WM(π)Ω,Ω〉γ,φ −
∑

π∈Int(n)\{1̂n}

Bπ[X(u1), ..., X(un)]

=
∑

π∈NCns(n)

〈WM(π)Ω,Ω〉γ,φ −
∑

π∈Int(n)\{1̂n}

∏
V ∈π

∑
σ∈ÑCns(|V |)

〈WM(σ)Ω,Ω〉γ,φ

=
∑

π∈NCns(n)

〈WM(π)Ω,Ω〉γ,φ −
∑

σ∈NCns,mo(n)

〈WM(π)Ω,Ω〉γ,φ

=
∑

π∈ÑCns(n)

〈WM(π)Ω,Ω〉γ,φ,

where the second equality follows from the induction hypothesis.

Corollary 2.2.2.3. If γ = −φ, Bn[X(u1), ..., X(un)] = 〈a−(u1)a0(u2) . . . a0(un−1)a+(un)Ω,Ω〉.

2.2.3 Free Cumulants

Definition 2.2.3.1. Define the operator a∼γ (b) (b ∈ B) by linear extension of

a∼γ (b)(u1 ⊗ . . .⊗ un) = γ[bu1]u2 ⊗ . . .⊗ un for n ≥ 2,
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a∼γ (b)(u1) = 0 for n = 1, and

a∼γ (b)(Ω) = 0.

The operator a∼φ (b) is defined in a similar manner (for n ≥ 2, apply φ, and a∼φ (b)(Ω) = 0),

with one critical exception:

a∼φ (b)(u1) = φ[bu1]Ω for n = 1.

Thus a−(b) = a∼γ (b) + a∼φ (b).

In the free cumulant formula below, given π ∈ NC(n) and u1, ..., un ∈ B, we will assign the

following weight operator on Falg(B):

WC(π) =
n∏
i=1

ai(ui),

where

ai =



a+, if i is a closing element,

a∼γ , if i 6= 1 and is an opening element,

a∼φ , if i = 1, or

a0, if i is a middle element.

Proposition 2.2.3.2. For n ≥ 2, given u1, ..., un ∈ B, we have the following mixed free cumulant

formula:

Rn[X(u1), ..., X(un)] =
∑

π∈ÑCns(n)

〈WC(π)Ω,Ω〉γ,φ, (2.8)

and for n = 1, the cumulant is zero.

Proof. By Theorem 1 in [14] and Lemma 2.2.2.2,

∑
π∈ÑCns(n)

Rπ[X(u1), ..., X(un)] = Bn[X(u1), ..., X(un)]

=
∑

π∈ÑCns(n)

∑
`∈Block labelings(γ,φ)

〈W (π, `)Ω,Ω〉γ,φ,
(2.9)
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where ` is a labeling of the blocks of π with either a γ or φ such that the block containing 1 and n

is labeled φ, and W (π, `) =
∏n

i=1 ai(ui), where

ai =



a+, if i is a closing element,

a∼γ , if i is an opening element of a block labeled γ,

a∼φ , if i is an opening element of a block labeled φ,

a0, if i is a middle element.

This splitting of terms follows from linearity and the fact that the opening of each block is weighted

with (γ + φ) of a product involving the operator in that position.

Since the first moment (and thus free cumulant) is zero, for n = 2, we have

R2[X(u1), X(u2)] = M2[X(u1)X(u2)] = 〈a−(u1)a+(u2)Ω,Ω〉γ,φ,

and for n = 3, we have

R3[X(u1), X(u2), X(u3)] = M3[X(u1)X(u2)X(u3)] = 〈a−(u1)a0(u2)a+(u3)Ω,Ω〉γ,φ.

For induction, assume for all natural numbers less than some n, the formula holds.

Let � denote the partial order on NC(n) described in Subsection 1.2.6. Then the inductive

hypothesis implies the left-hand side of (2.9) equals

Rn[X(u1), ..., X(un)] +
∑

π∈ÑCns(n)\{1n}

∑
σ�π

〈W (σ)Ω,Ω〉γ,φ,

where each σ is labeled such that for all V ∈ π, σ|V has its unique outer block labeled φ, while the

rest (that is, the inner blocks) are labeled γ.

By Belinschi and Nica’s lemma (provided as Lemma 1.2.6.4 in this work), the above sum can
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be rewritten as

Rn[X(u1), ..., X(un)] +
∑

σ∈ÑCns(n)\{1n}

∑
S∈Sσ

〈W (σ, `S)Ω,Ω〉γ,φ,

where `S is the labeling constructed by giving blocks in S the label φ and the rest γ. Subtracting

the sum from both sides gives the result.

Corollary 2.2.3.3. If γ = 0, Rn[X(u1), ..., X(un)] = 〈a−(u1)a0(u2) . . . a0(un−1)a+(un)Ω,Ω〉.

Once again, the original statement of this formula was in terms of Motzkin paths, translated

via the bijection in Lemma 1.2.10.4:

Corollary 2.2.3.4. For n ≥ 2, given u1, ..., un ∈ B, we have the following mixed free cumulant

formula:

Rn[X(u1), ..., X(un)] =
∑

path∈MP (n−2)

〈a−(u1)WC(path)a+(un)Ω,Ω〉γ,φ, (2.10)

where MP(k) is the set of all (unlabeled) Motzkin paths of length k, and

WC(path) =
n∏
i=1

ai(ui),

where

ai =


a+, if there is a falling step at i− 1,

a∼γ , if there is a rising step at i− 1,

a0, if there is a flat step at i− 1.

For n = 1, the cumulant is zero.

Example 2.2.3.5. In the setting of Example 2.1.3.1,

R[(X(f1), . . . , X(fn)] =
∑
π∈ÑC

φ[η|π|−1λn−2|π|f1f2 . . . fn].
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In particular, in this case R′[(X(f2), . . . , X(fn−1)] below may be identified with an element of B.

Note also that if fg = gf = f ∗g = fg∗ = 0, then X(f) and X(g) are free, and if f is

self-adjoint with ηf = λf = 0, then X(f) is semicircular.

See Section 2.5 for related results.

2.2.4 Cumulant-like Generating Function

We can define the B-valued “kernel” of a free cumulant R[u1, ..., uk] as follows:

Definition 2.2.4.1. For each u1, . . . , uk ∈ B, the (a priori unbounded) linear operator R′[u1, ..., uk]

on B is defined by

R′[u1, ..., uk] =

 ∑
π∈Int({1,...,k})

∏
V ∈π

w(V )

 , (2.11)

where the products are ordered by each block’s appearance in the partition (from left to right),

and the weights are given by w({i}) = a0(ui) and w({i1, ..., ik}) = γ[ui1R
′[ui2 , ..., uik−1

]uik ] for

k ≥ 2, with R′[∅] = 1.

Note that for Λ(u ⊗ v) = Λ(u)v, R′[u1, ..., uk] is the operator of multiplication by an element

of B.

The definition may seem strange at first glance but will make sense after we prove the following

property of this operator. Note that by Riesz’s representation theorem, we could have simply

defined R′ by this property instead.

Lemma 2.2.4.2.

R[X(u1), . . . , X(un)] = 〈R′[u2, . . . , un−1]un, u
∗
1〉 = φ[u1R

′[u2, . . . , un−1]un]. (2.12)

Proof. To show that
〈(∑

π∈Int({2,...,n−1})
∏

V ∈π w(V )
)
un, u

∗
1

〉
=
∑

π∈ÑCns(n)〈W (π)Ω,Ω〉γ,φ, we

will prove a slightly stronger statement:

R′′ := u1

 ∑
π∈Int({2,...,n−1})

∏
V ∈π

w(V )

un =
∑

π∈ÑCns(n)

W ′(π)Ω, (2.13)
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where the weights in the right-hand side are the same as in the cumulant formula, except all opening

steps at 1 will be weighted by the identity map instead of a∼φ . In Example 2.1.1.1, the change is

simply neglecting to integrate the last variable.

For n = 2, we have u1u2 on both sides. For n = 3, we have u1a
0(u2)u3. For induction, assume

the lemma holds for all natural numbers less than some n. Then

∑
π∈ÑCns(n)

W ′(π)Ω = u1

 ∑
π∈Int({2,...,n−1})

∏
V ∈π

w(V )

un,

where for k ≥ 2, w({i1, ..., ik}) = γ
[
ui1

(∑
π∈Int({2,...,k−1})

∏
V ∈π w(V )

)
uik

]
.

At this point, we are done, since each π ∈ ÑCns(n) can be uniquely constructed by taking some

σ ∈ Int{2, ..., n − 1}, then constructing the unique outer block {1, singletons(σ), n}, then each

nested block immediately below the outer block is recursively constructed in the same manner.

Finally, applying the vacuum state to both sides of (2.13) gives the result.

Next, we prove an equation which characterizes the generating function for this family of

operators, which in turn will give us an equation for the free cumulant generating function.

Lemma 2.2.4.3. Denote R′n[u] := R′[u, ..., u] (n arguments), where R′0[u] = 1. Then

R′n[u] =
n−2∑
i=0

R′i[u]γ[uR′n−i−2[u]u] +R′n−1[u]a0(u). (2.14)

Proof. The claim is analogous to the recursion for the number In of interval partitions of length n,

In =
n−1∑
i=0

Ii,

where n − i is the number of elements in the block containing n. The right-hand side in (2.14)

is obtained in a similar manner, in which each term is obtained by collecting all terms in the sum

(2.11) (over interval partitions) for R′n[u] for which the weight for the block containing n is a

factor. Thus, by summing over i where n − i is the number of elements in the block containing
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n, the term corresponding to each i is a product of R′i[u] and either γ[uR′n−i−2[u]u], the weight of

the block containing n for i ≤ n − 2, or a0(u), the weight of the singleton block containing n for

i = n− 1.

Theorem 2.2.4.4. Let R′(u) be the generating function of R′n[u], n ≥ 0. Then for any v ∈ B,

R′(u)v = v +R′(u)γ [uR′(u)u] v +R′(u)Λ(u⊗ v). (2.15)

Proof. Applying Lemma 2.2.4.3,

R′(u) = 1 +
∞∑
n=1

R′n[u]

= 1 +
∞∑
n=1

(
n−2∑
i=0

R′i[u]γ[uR′n−i−2[u]u] +R′n−1[u]a0(u)

)

= 1 +
∞∑
n=1

(
n−2∑
i=0

R′i[u]γ[uR′n−i−2[u]u]

)
+
∞∑
n=1

R′n−1[u]a0(u)

= 1 +

(
∞∑
n=0

R′n[u]

)
γ

[
u
∞∑
n=0

R′n[u]u

]
+R′(u)a0(u)

= 1 +R′(u)γ [uR′(u)u] +R′(u)a0(u).

Corollary 2.2.4.5. More generally, for u1, ..., uk ∈ B, let

R′(u1, ..., uk) =
∞∑
n=0

∑
|j|=n

R′n[uj(1), ..., uj(n)]
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be the generating function for the mixed R′n. Then

R′(u1, ..., uk)v

= v +R′(u1, ..., uk)γ

[(
k∑
i=1

ui

)
R′(u1, ..., uk)

(
k∑
j=1

uj

)]
v +R′(u1, ..., uk)

k∑
i=1

Λ(ui, v).

(2.16)

Proof. Apply Theorem 2.2.4.4 to R′
(∑k

i=1 ui

)
= R′(u1, ..., uk).

Remark 2.2.4.6. The generating function for R′′n[u] is given by R′′(u) = uR′(u)u, since R′′n[u] is

only defined for n ≥ 2. Thus, R′′(u) satisfies

R′′(u) = u2 + uR′(u)γ [R′′(u)]u+ uR′(u)Λ(u, u). (2.17)

Applying the vacuum state to both sides gives an equation for the cumulant generating function.

Note that R′′(u) is a series of elements of B.

Example 2.2.4.7. For Λ(u⊗ v) = Λ(u)v,

R′(u) = (1− Λ(u)− γ[uR′(u)u])
−1
.

In particular, in the setting of Example 2.1.1.1, we may identify R′(f) with a function satisfying

R′(f)(t) =
1

1−
∫
λ(s, t)f(s) ds− f(t)

∫
w(s, t)R′(f)(s)f(s) ds

.

Example 2.2.4.8. In the setting of Example 2.1.3.1,

R′(f) = 1 + λR′(f)f + ηR′(f)fR′(f). (2.18)

In the case where B = L∞([0, 1]), we may take R′(f) to be the operator of pointwise multipli-
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cation by a function R′(f)(x) which satisfies

R′(f)(x) = 1 +R′(f)(x)λ(x)f(x) +R′(f)(x)2η(x)f(x),

and so is a solution of a quadratic equation for each x. We also have

R(f) =

∫
f(x)2R′(f)(x) dx.

Remark 2.2.4.9. Constructions and results in this section are reminiscent of operator-valued prob-

ability theory, such as those in [10]. In this remark we indicate how these constructions differ. The

map

b1 ⊗ b1 ⊗ . . .⊗ bn 7→ b1Xb2X . . . bnX, Ω 7→ 1B

is an isomorphism from the algebraic Fock space
⊕∞

n=0 B⊗n onto a subspace of non-commutative

polynomials B〈X〉. Using this identification, the relation between the operators in this article (for

Λ(f ⊗ g) = Λ(f)g) and in Proposition 3.1 from [10] is:

a+(b)↔ ba∗, a−(b)↔ a b, a0(b)↔ p

with α1 = φ, αn = γ + φ for n ≥ 2, and λn = Λ(b) for n ≥ 1. Thus the operator X(1) here is

the same as the B-valued X , but the interaction with the algebra B is different in the two settings.

Similarly, the identity

R′(b) = 1 +R′(b)γ [bR′(b)b] +R′(b)Λ(b).

satisfied by the (under appropriate assumptions) B-valued generating function R′(b) (from Theo-

rem 2.2.4.4) is similar to, but different from the relation

b−1Rµ(b)b−1 = 1 + γ[Rµ(b)b−1]Rµ(b)b−1 + λRµ(b)b−1.

from Proposition 3.22 in [10]. They do again coincide (up to a flip) for b = 1.
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In light of the preceding remark, the following is related to Theorem 2 from [1].

Proposition 2.2.4.10. Let B be a C∗-algebra and u1, . . . , un ∈ B self-adjoint. Assume that Λ(u⊗

v) = Λ(u)v. Let X1, . . . , Xn be a B-valued semicircular system with means Λ(u1), . . . ,Λ(un) and

the covariance matrix η : B → Mn(B) with ηij[b] = γ[uibuj]; the existence of such a system in

some B-valued non-commutative probability space (A,E,B) is guaranteed by [20]. Then

R[X(uj(1)), X(uj(2)), . . . , X(uj(k−1)), X(uj(k))] = φ[uj(1)E[Xj(2) . . . Xj(k−1)]uj(k)].

2.3 Polynomial Generating Functions

2.3.1 Wick Polynomials

Definition 2.3.1.1. For u1⊗ . . .⊗un ∈ B⊗n, define the operatorW (u1⊗ . . .⊗un) on the algebraic

Fock space by the recursion

W (b⊗ u1 ⊗ . . .⊗ un)

= X(b)W (u1 ⊗ . . .⊗ un)−W (a0(b)(u1 ⊗ . . .⊗ un))−W (a−(b)(u1 ⊗ . . .⊗ un))

= X(b)W (u1 ⊗ . . .⊗ un)−W (Λ(b⊗ u1)⊗ u2 ⊗ . . .⊗ un)−W ((γ + φ)[bu1]u2 ⊗ . . .⊗ un)

with the initial conditions

W (∅) = I, W (u1) = X(u1), W (u1 ⊗ u2) = X(u1)W (u2)−W (Λ(u1 ⊗ u2))− φ[u1u2].

It follows immediately that W (u1 ⊗ ... ⊗ un) is a polynomial (which we will also call a Wick

polynomial) in the variables {X(u) : u ∈ B}, although note that it typically is not in Alg{X(u1), ..., X(un)}.

It is also clear from the recursion that

W (u1 ⊗ ...⊗ un)Ω = u1 ⊗ ...⊗ un for all u1, ..., un ∈ B. (2.19)

In particular, we denote Wn(u) = W (u⊗n). From (2.19), we get orthogonality between polyno-
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mials of different degrees under the vacuum state. Since each W (u1 ⊗ ... ⊗ un) ∈ Γalgγ,Λ(B, φ), it

follows that Ω is cyclic for this algebra.

For the moment, we establish the generating function, and the inverse used to recover it, as a

formal object, as seen in the next proposition. In Section 2.4, we will give conditions under which

these series are convergent and correspond to well defined operators.

Proposition 2.3.1.2. Denote W (u) = 1 +
∑∞

n=1 Wn(u) and

b(u) = 1 + Λ(u⊗ u)u−1 + (γ + φ)[u2].

Note that for the case Λ(u⊗ v) = Λ(u)v, b(u) = 1 + Λ(u) + (γ + φ)[u2]. Then

(b(u)−X(u))W (u) = b(u)− φ[u2].

Proof.

X(u)Wn(u) = Wn+1(u) + (γ + φ)[u2]Wn−1(u) + Λ(u⊗ u)u−1Wn(u),

X(u)W1(u) = W2(u) + φ[u2] + Λ(u⊗ u)u−1W1(u),

X(u) = W1(u).

So

X(u)W (u) = W (u)− 1 + φ[u2] + (γ + φ)[u2](W (u)− 1) + Λ(u⊗ u)u−1(W (u)− 1).

2.3.2 Matricial Generating Functions

In this section, we will explore a means of recovering the multi-variable polynomials {W (un⊗

... ⊗ um)} for n ≤ m and {un}∞n=1 a sequence in B. Rather than attempt to directly treat their
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generating function, we instead can compute the following matrix W which will contain the poly-

nomials arranged so that the diagonal n places to the right of the main diagonal will contain all

those with degree n. In the following proposition, L(`2) denotes the algebra of linear (not neces-

sarily bounded) operators, and {Eij} are the standard matrix units in it.

We can think of the maps X,W , etc., as non-linear maps from the vector space B∞ =
⊕∞

i=1 B

to the corresponding matrices of operators. Moveover, if we put onB∞ the natural norm ‖(ui)∞i=1‖ =

supi ‖ui‖, on a sufficiently small ball the image of this map consists of bounded operators. This

map itself is not bounded, but the map u 7→ W (u)− I is bounded on every small ball. The same

is true of the free cumulant generating function.

Proposition 2.3.2.1. Let {ui : i ∈ N} ⊂ B. Define matrices with operator entries Φ ∈ L(`2),

Γ, A0 ∈ B ⊗ L(`2), X,W ∈ L(Fγ,φ(B)⊗ `2) as follows:

X =
∞∑
i=1

X(ui)⊗ Ei,i+1,

W =
∞∑
i=1

(
Ei,i +

∞∑
j=1

W (ui ⊗ . . .⊗ ui+j−1)⊗ Ei,i+j

)
,

Φ =
∞∑
i=1

φ[uiui+1]⊗ Ei,i+2,

Γ =
∞∑
i=1

γ[uiui+1]⊗ Ei,i+2,

A0 =
∞∑
i=1

Λ(ui ⊗ ui+1)u−1
i+1 ⊗ Ei,i+1.

Denote B = I + A0 + Γ + Φ ∈ L(Fγ,φ(B)⊗ `2). Then

(B −X)W = (B − Φ).
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Proof. For k > i+ 2,

X(ui)W (ui+1 ⊗ . . .⊗ uk−1) = W (ui ⊗ . . .⊗ uk−1) + Λ(ui ⊗ ui+1)u−1
i+1W (ui+1 ⊗ . . .⊗ uk−1)

+ (γ[uiui+1] + φ[uiui+1])W (ui+2 ⊗ . . .⊗ uk−1).

For k = i+ 2,

X(ui)W (ui+1) = W (ui ⊗ ui+1) + Λ(ui ⊗ ui+1)u−1
i+1W (ui+1) + φ[uiui+1].

For k = i+ 1,

X(ui)1 = W (ui)

By comparing matrix entries, we can see that this implies

XW = (W − I) + A0(W − I) + Φ + (Γ + Φ)(W − I). (2.20)

Since B − X is an upper-triangular matrix with only 1s along the main diagonal, its inverse

exists for a finite family of {ui}, and in a strictly formal sense for an infinite family. In the next

section, we will discuss conditions under which (B − X)−1 (and W ) is a bounded operator on

Fγ,φ(B)⊗ `2.

Since W contains all the information about the multivariate W ’s, it be considered as a kind of

generating function for them. By constructing certain corresponding operators on a matricial Fock

space construction, we can view W as a genuine generating function of these operators.

Definition 2.3.2.2. Let D be a ∗-algebra; below we will take D = L(`2). B ⊗ D is naturally a
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D-bimodule. On the Fock space

∞⊕
n=0

B⊗n ⊗D ' (B ⊗D)⊗Dn,

we consider operators indexed by elements of B ⊗D

a+(b⊗ d)(u1 ⊗ . . .⊗ un ⊗ d′) = b⊗ u1 ⊗ . . .⊗ un ⊗ dd′,

a−(b⊗ d)(u1 ⊗ . . .⊗ un ⊗ d′) = γ[bu1]u2 ⊗ . . .⊗ un ⊗ dd′,

a−(b⊗ d)(u1 ⊗ d′) = φ[bu1]dd′,

a0(b⊗ d)(u1 ⊗ . . .⊗ un ⊗ d′) = Λ(b, u1)⊗ u2 ⊗ . . .⊗ un ⊗ dd′,

a−(b⊗ d)(d′) = a0(b⊗ d)(d′) = 0.

Then any operator in the algebra generated by {a+(b⊗ d), a−(b⊗ d), a0(b⊗ d) : b ∈ B, d ∈ D} is

of the form A⊗ d, where A acts purely on
⊕∞

n=0 B⊗n. Moreover, the map

Ψ : (A⊗ d) 7→ 〈(A⊗ d)(1B ⊗ 1D), 1B ⊗ 1D〉 = 〈A1B, 1B〉 d (2.21)

is a D-valued conditional expectation on the algebra generated by {X(b⊗ d) : b ∈ B, d ∈ D}.

Remark 2.3.2.3. Let D = L(`2) be the algebra of linear operators on `2. Let {ui : i ∈ N} ⊂

B, and define the matrix U ∈ B ⊗ L(`2) by U =
∑

i≥1 ui ⊗ Ei,i+1. Then the objects from

Proposition 2.3.2.1 are in fact Φ = (φ⊗ I)[U2], Γ = (γ ⊗ I)[U2], A0 = Λ̃[U ⊗ U ], where

Λ̃[(u⊗ S)⊗ (v ⊗ T )] = Λ(u⊗ v)⊗ (ST ),
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and X = a+(U) + a−(U) + a0(U). If, in addition, B is a C*-algebra and

sup
i
‖ui‖ <∞, (2.22)

then U ∈ B ⊗ B(`2), where B(`2) denotes the algebra of bounded operators.

Before interpreting W (U) as a generating function, we will first establish the analogous results

for moments and cumulants. The formulas below are similar to, but once again different from,

those in Section 6.3 in [9]. The first of these is straightforward.

Lemma 2.3.2.4. For Ψ defined in (2.21) for the case of D = L(`2),

Ψ[Xn] =
∞∑
i=1

〈X(ui)...X(ui+n−1)Ω,Ω〉 Ei,i+n. (2.23)

Given a non-commutative operator-valued probability space

(Alg(X(b⊗ d) : b ∈ B, d ∈ D = L(`2)),D,Ψ),

we may defineD-valued free cumulantsR[d0X, d1X, . . . , dn−1Xdn] as in Chapter 4 of [18]. How-

ever, we will only be interested in these for d0 = d1 = . . . = dn = 1. In this case, we have the

relation

Corollary 2.3.2.5.

Rn[X, ..., X] =
∞∑
i=1

R[X(ui), ..., X(ui+n−1)]Ei,i+n. (2.24)

Proof. For n = 1,

R1[X]i,j = Φ[X]i,j = φ[X(ui)], for j − i = 1.

For n = 2,

Φ[X2] = R2[X,X] +R1[X]2,
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so

R2[X,X] = Φ[X2]−R1[X]2 = Φ[X2]− Φ[X]2,

then

R2[X,X]i,j = φ[X(ui)X(ui+1)]− φ[X(ui)]φ[X(ui+1)]

= R2[X(ui), X(ui+1)], for j − i = 2.

Next, assume this is true for up to n− 1. Then

Rn[X, ..., X] = φ[Xn]−
∑

π∈NC(n)\1̂n

Rπ[X, ..., X],

where Rπ[X, ..., X] =
∏

V ∈πR|V |[X, ..., X]. Applying the inductive hypothesis, the matrices in

the right-hand side are nonzero only for the i, jth entries such that j − i = n, and moreover, after

summing the right-hand side, the i, jth entry (for such i, j) is the cumulantR[X(ui), ..., X(ui+j−1)].

Definition 2.3.2.6. Define the operatorsWn(U) on the Fock spaceFγ,φ(B)⊗B(`2) by the recursion

X(U)Wn(U) = Wn+1(U) + δn≥1Λ̃(U ⊗ U)U−1Wn(U)

+
(
δn≥2(γ ⊗ I)[U ⊗ U ] + (φ⊗ I)[U ⊗ U ]

)
Wn−1(U).

Clearly Wn(U)Ω = U⊗n and its generating function
∑

nWn(U) satisfies equation (2.20), hence it

equals W entry-wise.

With this definition, we have a similar construction for the promised generating function of the

polynomials.

Proposition 2.3.2.7. In the setting of Proposition 2.3.2.1, denote by Wn the matrix with a single

non-zero diagonal, with entries (Wn)i,i+n = W (ui ⊗ . . . ⊗ ui+n−1). Then as in the proof of that
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proposition, for n 6= 2

XWn = Wn+1 + A0Wn + (Γ + Φ)Wn−1,

and so Wn(U) can be identified with this matrix Wn. Note that if we only have finitely many

non-zero entries ui, boundedness condition (2.22) holds automatically.

2.4 Norm Estimates and Convergence of Generating Functions

The next two results can be used to estimate the norm ofX(f). The following lemma is closely

related to Lemma 4 in [21] and Lemma 1 in [22], although it is not stated in quite this form in either

of those sources.

Lemma 2.4.0.1. Let H be a Hilbert space, and K a positive operator on it. Denote 〈ξ, η〉K =

〈ξ,Kη〉 the corresponding deformed inner product. Then for an operator X onH, denoting by X∗

its adjoint with respect to the deformed inner product, ‖X‖K ≤
√
‖X‖ ‖X∗‖.

Proof. Denote by X ′ the adjoint of X under the usual inner product. Then

〈KX∗ξ, η〉 = 〈X∗ξ,Kη〉 = 〈ξ,KXη〉 = 〈X ′Kξ, η〉, (2.25)

which implies KX∗X = X ′KX ≥ 0. Then

KX∗X(KX∗X)∗ = KX∗X2X∗K ≤
∥∥X∗X2X∗

∥∥K2. (2.26)

Taking the square root of both sides, we have

KX∗X ≤
√
‖X∗X2X∗‖K ≤ ‖X‖ ‖X∗‖K. (2.27)
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So

〈Xξ,Xξ〉K = 〈ξ,X∗Xξ〉K = 〈ξ,KX∗Xξ〉

≤ ‖X‖ ‖X∗‖ 〈ξ,Kξ〉

= ‖X‖ ‖X∗‖ 〈ξ, ξ〉K .

Remark 2.4.0.2. In Example 2.1.1.1,

〈F,G〉γ,φ = 〈F,KG〉

where K is the multiplication operator by

[(1 + w)⊗ 1⊗(n−2)] · [1⊗ (1 + w)⊗ 1⊗(n−3)] · . . . · [1⊗(n−2) ⊗ (1 + w)].

In the commutative case we may identify

K(s1, s2, . . . sn) = (1 + w(s1, s2)) . . . (1 + w(sn−1, sn)).

In Example 2.1.4.1,
〈
~ξ, ~η
〉
γ,φ

is the standard inner product on L2(B, φ)⊗ L2(B, ψ + φ)⊗(n−1).

For the remainder of this section, we assume that B is a C∗-algebra, and the maps φ : B → C,

γ : B → B, and Λ : B × L2(B, φ)→ L2(B, φ) are bounded.

Proposition 2.4.0.3.

a. ‖a+(b)‖γ,φ = ‖a−(b)‖γ,φ ≤
√

max{‖φ[b∗b]‖ , ‖(γ + φ)[b∗b]‖} ≤
√

max{‖φ‖ , ‖γ + φ‖} ‖b‖.

b. In the special case Λ(b⊗ u1) = Λ(b)u1 with Λ : B → B,

∥∥a0(b)
∥∥
γ,φ
≤ ‖Λ‖ ‖b‖ .
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c. In the setting of Example 2.1.1.1, for w ∈ B ⊗min B,

∥∥a−(b)
∥∥
γ,φ
≤ ‖w‖ ‖b‖ .

For ‖Λ(b⊗ b1)‖φ ≤ ‖Λ‖ ‖b‖ ‖b1‖φ,

∥∥a0(b)
∥∥
γ,φ
≤ ‖Λ‖ ‖b‖ .

For the commutative particular case, these correspond to ‖w‖∞ <∞ and

∫∫ (∫ 1

0

|λ(s, x, y)| dx
)2

ds dy <∞.

d. In the setting of Example 2.1.4.1,

∥∥a0(b)
∥∥
γ,φ
≤ max

(
‖Λ(·, ·)‖B⊗L2(B,φ) , ‖Λ(·, ·)‖B⊗L2(B,ψ+φ)

)
‖b‖ .

It follows that in these cases, the operators in Construction 2.1.0.1 are well-defined and bounded

on Fγ,φ(B).

Proof. Since tensors of different length in the Fock space are orthogonal, it suffices to estimate

‖a+(b)‖F separately on tensors of fixed length. For n = 0,

〈X(b)Ω, X(b)Ω〉γ,φ
〈Ω,Ω〉γ,φ

=
〈b, b〉γ,φ

1
= φ[b2] = ‖φ‖‖b‖2

B.

For part (a) and a+, let u ∈ B. Then

‖a+(b)u‖2
γ,φ = φ[u∗(γ + φ)[b∗b]u] ≤ ‖γ + φ‖B‖b‖2

B‖u‖2
γ,φ.

For tensors of length n ≥ 2, it suffices to consider a sum
∑k

i=1 u
(1)
i ⊗ ... ⊗ u

(n)
i of simple

tensors in B⊗n, since B⊗n is the ‖·‖γ,φ-completion of the subspace of finite sums of simple tensors
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of length n.

∥∥∥∥∥a+(b)
∑
i

u
(1)
i ⊗ u

(2)
i ⊗ ...⊗ u

(n)
i

∥∥∥∥∥
2

γ,φ

=

∥∥∥∥∥∑
i

b⊗ u(1)
i ⊗ u

(2)
i ⊗ ...⊗ u

(n)
i

∥∥∥∥∥
2

γ,φ

= φ

[∑
ij

u
(n)∗
i (γ + φ)

[
...(γ + φ)

[
u

(1)∗
i (γ + φ)[b∗b]u

(1)
j

]
...
]
u

(n)
j

]

≤ ‖γ + φ‖B‖b‖2
Bφ

[∑
ij

u
(n)∗
i (γ + φ)

[
...(γ + φ)

[
u

(1)∗
i u

(1)
j

]
...
]
u

(n)
j

]

= ‖γ + φ‖B‖b‖2
B

∥∥∥∥∥∑
i

u
(1)
i ⊗ u

(2)
i ⊗ ...⊗ u

(n)
i

∥∥∥∥∥
2

γ,φ

,

where the inequality is due to positivity of the map

x 7→
∑
ij

z∗i (γ + φ) [y∗i xyj] zj

for any {yi}, {zj} ⊂ B, which is a result of complete positivity of γ+φ, the positivity of the matrix

[y∗i (γ + φ)[b∗b]yj]ij , and Lemma 3.5.3 in [18].

Hence, ‖a+(b)‖F ≤
√

max{‖γ + φ‖B, ‖φ‖}‖b‖B.

Since a−(b) is the adjoint of a+(b), their operator norms are equal, so the above inequality also

applies to a∼.

For part (b) and Λ(b) applied to tensors of length 1:

‖Λ(b)u‖2
γ,φ = φ[u∗Λ(b)∗Λ(b)u] ≤ ‖Λ(b)‖2

B φ[u∗u] ≤ ‖Λ‖2
B→B ‖b‖

2
B φ[u∗u].
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For n ≥ 2:

∥∥∥∥∥Λ(b)
∑
i

u
(1)
i ⊗ u

(2)
i ⊗ ...⊗ u

(n)
i

∥∥∥∥∥
2

γ,φ

=

∥∥∥∥∥∑
i

Λ(b)u
(1)
i ⊗ u

(2)
i ⊗ ...⊗ u

(n)
i

∥∥∥∥∥
2

γ,φ

= φ

[∑
ij

u
(n)∗
i (γ + φ)

[
...(γ + φ)

[
u

(1)∗
i Λ(b)∗Λ(b)u

(1)
j

]
...
]
u

(n)
j

]

≤ ‖Λ‖2
B→B ‖b‖

2
Bφ

[∑
ij

u
(n)∗
i (γ + φ)

[
...(γ + φ)

[
u

(1)∗
i u

(1)
j

]
...
]
u

(n)
j

]

= ‖Λ‖2
B→B ‖b‖

2
B

∥∥∥∥∥∑
i

u
(1)
i ⊗ u

(2)
i ⊗ ...⊗ u

(n)
i

∥∥∥∥∥
2

γ,φ

,

where the inequality follows in the same way as before.

For part (c), we apply Lemma 2.4.0.1. Part (d) follows from standard tensor product properties.

Proposition 2.4.0.4. Suppose Λ(f ⊗ g) = Λ(f)g. Let u1, . . . , un ∈ B. Define recursively a se-

quence (αj) by αj = 2αj−1+αj−2, α0 = 1, α1 = 1. Then, denoting cγ,φ =
√

max{‖φ‖, ‖γ + φ‖},

‖W (u1)‖ ≤ 2cγ,φ + ‖Λ‖ ,

and for n ≥ 2 and K = 2 + ‖Λ‖
cγ,φ

+ 1
2c2γ,φ

,

‖W (u1, . . . , un)‖ ≤ αnc
n
γ,φK ‖u1‖ . . . ‖un‖ .

Proof. W (u1) = X(u1),

W (u1, u2) = X(u1)W (u2)− Λ(u1)W (u2)− φ[u1u2] = (a+(u1) + a−(u1))W (u2)− φ[u1u2],
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and for n ≥ 3,

W (u1, u2, . . . , un) = (a+(u1) + a−(u1))W (u2, . . . , un)− (γ + φ)[u1u2]W (u3, . . . , un).

Therefore by Proposition 2.4.0.3, ‖W (u)‖ = ‖X(u)‖ ≤ 2cγ,φ + ‖Λ‖,

‖W (u1, u2)‖ ≤ 2
∥∥a+(u1)

∥∥ ‖W (u2)‖+ |φ[u1, u2]| ≤ 2cγ,φ ‖u1‖ ‖W (u2)‖+ ‖u1‖ ‖u2‖ ,

and for n ≥ 3,

‖W (u1, u2, . . . , un)‖

≤ 2cγ,φ ‖u1‖ ‖W (u2, . . . , un)‖+ c2
γ,φ ‖u1‖ ‖u2‖ ‖W (u3, . . . , un)‖ .

The result follows by induction.

Let’s turn our attention back to the infinite matrix W whose structure we established in the

previous section, particularly the decomposition into a sum of matrices with a single non-zero

diagonal. The following more general proposition will be combined with this fact to obtain condi-

tions under which W is a bounded operator. This result must be standard, although we do not have

a reference for it.

Lemma 2.4.0.5. Let T ∈ B(H ⊗ `2), which we can write as an infinite matrix with entries Tij .

Then

‖T‖ ≤
∑
i∈Z

sup
k≥max(1,1−i)

‖Tk,k+i‖ .

Proof. Let Ti be the infinite matrix with entries (Ti)jk = Tjk if k− j = i and 0 otherwise (in other

words, Ti is comprised of the diagonal of T which is i positions above the main diagonal (below if
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negative)). Let
∑

k uk ⊗ ek ∈ H ⊗ `2. Then

∥∥∥∥∥Ti
(∑

j

uj ⊗ ej

)∥∥∥∥∥
2

H⊗`2

=

∥∥∥∥∥∥
∑

j≥max(1,1−i)

Tj,j+iuj+i ⊗ ej

∥∥∥∥∥∥
2

H⊗`2

=
∑

j≥max(1,1−i)

‖Tj,j+iuj+i ⊗ ej‖2
H⊗`2

≤
∑

j≥max(1,1−i)

‖Tj,j+i‖2 ‖uj+i ⊗ ej‖2
H⊗`2

≤

(
sup

j≥max(1,1−i)
‖Tj,j+i‖2

) ∑
j≥max(1,1−i)

‖uj+i ⊗ ej‖2
H⊗`2

=

(
sup

j≥max(1,1−i)
‖Tj,j+i‖2

)∥∥∥∥∥∑
j

uj ⊗ ej

∥∥∥∥∥
2

H⊗`2

The result then follows by the triangle inequality.

Corollary 2.4.0.6. For supi ‖ui‖ ≤ 1
(1+
√

2)cγ,φ
and Λ(u⊗ v) = Λ(u)v,

‖W‖ ≤ K

2
√

2

1

1− (1 +
√

2)cγ,φ supi ‖ui‖
,

and

W = (B −X)−1(B − Φ).

Proof. Solving the recursion,

αj =
1

2
√

2

(
(1 +

√
2)j − (1−

√
2)j
)
.

The estimate on the norm of W then follows from the preceding proposition, Lemma 2.4.0.5, and

Proposition 2.3.2.1.

Next, let Y = B − X − 1 = A0 + Γ + Φ − X . We wish to show (B − X) is invertible by
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checking that ‖Y ‖ < 1. Note that Y has non-zero entries on only two diagonals:

Yi,i+1 = a+(ui) + a−(ui)

Yi,i+2 = (γ + φ)[uiui+1].

So apply Lemma 2.4.0.5 and Proposition 2.4.0.3 to get the estimate

‖Y ‖ ≤ (
∥∥a+

∥∥+
∥∥a−∥∥)

(
sup
i
‖ui‖

)
+ c2

γ,φ

(
sup
i
‖ui‖

)2

≤ 2cγ,φ

(
sup
i
‖ui‖

)
+ c2

γ,φ

(
sup
i
‖ui‖

)2

,

which is less than 1 if and only if (supi ‖ui‖) <
√

2
√

2+3

cγ,φ
(satisfied by the assumption).

Finally, we return to the question of convergence for the cumulant generating function.

Proposition 2.4.0.7. Let K = max{
√
‖γ‖, ‖Λ‖}. Then ‖R′n[u]‖ ≤ CnK

n ‖u‖n, where Cn is

the Catalan number. If ‖u‖ ≤ 1
4K

, then the generating function R′(u) converges, and thus the

cumulant generating function does as well.

Proof. By Lemma 2.2.4.3, R′0[u] = 1, ‖R′1[u]‖ ≤ ‖Λ‖ ‖u‖ ≤ K ‖u‖, and

‖R′2[u]‖ ≤ ‖Λ‖2 + ‖γ‖ ≤ 2K2 ‖u‖2 .

Recursively,

‖R′n[u]‖ ≤
n−2∑
i=0

‖R′i[u]‖
∥∥R′n−i−2[u]

∥∥ ‖γ‖ ‖u‖2 +
∥∥R′n−1[u]

∥∥ ‖Λ‖ ‖u‖
≤

n−2∑
i=0

CiCn−i−2K
n−2 ‖γ‖ ‖u‖n + Cn−1K

n−1 ‖Λ‖ ‖u‖n

≤ CnK
n ‖u‖n
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since Cn−1 =
∑n−2

i=0 CiCn−i−2 and Cn ≥ 2Cn−1. So the generating function has norm bounded by

∞∑
n=0

‖R′n[u]‖ ≤
∞∑
n=0

CnK
n ‖u‖n .

A well-known approximation of the Catalan numbers via Stirling’s formula isCn ∼ 4n

n3/2
√
π

. So this

series’ convergence depends on that of
∑∞

n=0
4n

n3/2
√
π
Kn ‖u‖n, which only holds by assumption.

For the generating functionR[U ] =
∑∞

n=0 Rn[X, ..., X] for matricial cumulants, we also have

the following corollary:

Corollary 2.4.0.8. Under the conditions of Proposition 2.4.0.7, with the assumption ‖u‖ ≤ 1
4K

replaced with supk>0 ‖uk‖ ≤ 1
4K

, the infinite matrixR[U ] is bounded, with

‖R[U ]‖ ≤
∞∑
n=2

‖φ‖Cn−2K
n−2

(
sup
k>0
‖uk‖

)n
. (2.28)

Proof. Using Corollary 2.3.2.5, the ith diagonal ofR[U ] has the bound ‖φ‖Cn−2K
n−2 (supk>0 ‖uk‖)

n,

so the convergence of the sum follows from Lemma 2.4.0.5 and the same argument from the proof

of Proposition 2.4.0.7.

2.5 Traciality

In this section, we give conditions under which the vacuum state is tracial. We start with an

auxiliary result.

Definition 2.5.0.1. On Falg(B), define an anti-linear involution by the linear extension of

S(u1 ⊗ . . .⊗ un) = u∗n ⊗ . . .⊗ u∗1.
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For b ∈ B, denote Xr(b) = SX(b∗)S. Explicitly, for n ≥ 2,

Xr(u1 ⊗ . . .⊗ un) = u1 ⊗ . . .⊗ un ⊗ b+ u1 ⊗ . . .⊗ un−1 ⊗ Λ(b∗ ⊗ u∗n)∗

+ u1 ⊗ . . .⊗ un−1(γ + φ)[unb],

with appropriate modifications for n = 1 and n = 0. Denote Γalgγ,Λ(B, φ; r) = SΓalgγ,Λ(B, φ)S the

algebra generated by {Xr(b) : b ∈ B}. For ~ξ ∈ Falg(B) a simple tensor, denoteWr(~ξ) = SW (~ξ)S.

Then Wr(S(~ξ))Ω = ~ξ, so that Ω is cyclic for Γalgγ,Λ(B, φ; r).

Proposition 2.5.0.2.

a. Suppose that Γalgγ,Λ(B, φ) and Γalgγ,Λ(B, φ; r) commute. Then W extends to a linear map on

Falg(B),

Γalgγ,Λ(B, φ) =
{
W (~ξ) : ~ξ ∈ Falg(B)

}
, Γalgγ,Λ(B, φ; r) =

{
Wr(~ξ) : ~ξ ∈ Falg(B)

}
,

and for ~ξ ∈ Falg(B),

W (~ξ)∗ = W (S(~ξ)),

Therefore for A ∈ Γalgγ,Λ(B, φ), S(AΩ) = A∗Ω.

b. In addition to the assumption in (a), suppose that φ is tracial on B. Then the vacuum state

is tracial on Γalgγ,Λ(B, φ).

Proof.

a. Since Ω is cyclic for Γalgγ,Λ(B, φ) and Γalgγ,Λ(B, φ; r), it is separating for them (and the von

Neumann algebras they generate). Using the recursion and induction, for ~ξ ∈ Falg(B)

W (a+(b)(~ξ))Ω = X(b)W (~ξ)Ω−W (a0(b)(~ξ))Ω−W (a−(b)(~ξ))Ω

= X(b)~ξ − a0(b)(~ξ)− a−(b)(~ξ)

= a+(b)(~ξ).
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In particular, if ~ξ = 0, then W (~ξ)Ω = 0, so W (~ξ) = 0, and the map W is well defined.

Clearly, W (~ξ) ∈ Γalgγ,Λ(B, φ). On the other hand, using induction on the number of factors, a

monomial X(u0)X(u1) . . . X(un) is a linear combination of terms of the form X(u0)W (~ξ),

each of which is a linear combination of the terms of the form W (~ξ′) by the recursion.

Next, note that

Xr(b)Ω = X(b)Ω

and

W (b)∗ = X(b)∗ = X(b∗) = W (b∗).

Using induction,

W (a+(b)(~ξ))∗ = W (~ξ)∗X(b)∗ −W (a0(b)(~ξ))∗ −W (a−(b)(~ξ))∗

= W (S(~ξ))X(b∗)−W (S(a0(b)(~ξ)))−W (S(a−(b)(~ξ))).

On the other hand, if Xr(b) commutes with Γalgγ,Λ(B, φ),

W (S(~ξ))X(b∗)Ω = W (S(~ξ))Xr(b
∗)Ω = Xr(b

∗)W (S(~ξ))Ω

= SX(b)SS(~ξ) = SX(b)(~ξ).

Since Ω is separating for Γalgγ,Λ(B, φ), this implies that

W (S(~ξ))X(b∗) = W (SX(b)(~ξ)) = W (S(a+(b)(~ξ)))+W (S(a0(b)(~ξ)))+W (S(a−(b)(~ξ))).

Thus

W (a+(b)(~ξ))∗ = W (S(a+(b)(~ξ))).

b. We first show that Xr(b)
∗Ω = X(b)∗Ω. Indeed, for ~ξ ∈ B⊗n,

〈
Xr(b)(~ξ),Ω

〉
= 0 if n 6= 1.
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For u ∈ B, using the fact that φ is a trace,

〈Xr(b)(u),Ω〉 =
〈
Sa−(b∗)(S(u)),Ω

〉
= φ[b∗u] = φ[ub] = φ[bu] = 〈u, b∗〉 = 〈u,X(b)∗Ω〉

To check that the vacuum state is tracial on Γalgγ,Λ(B, φ), it suffices to verify that

〈
W (~ξ)X(b)Ω,Ω

〉
=
〈
W (~ξ)Xr(b)Ω,Ω

〉
=
〈
Xr(b)W (~ξ)Ω,Ω

〉
=
〈
W (~ξ)Ω, Xr(b)

∗Ω
〉

=
〈
W (~ξ)Ω, X(b)∗Ω

〉
=
〈
X(b)W (~ξ)Ω,Ω

〉
.

Theorem 2.5.0.3. Suppose the operators X(f) : u ∈ B are bounded. Denote

Γγ,Λ(B, φ) = W ∗(X(u) : u ∈ B) = W ∗(X(u) : u ∈ Bsa).

Consider the conditions

Λ(v∗ ⊗ u∗)∗ = Λ(u⊗ v), (2.29)

uγ[yv]− γ[uy]v = Λ(u⊗ Λ(y ⊗ v))− Λ(Λ(u⊗ y)⊗ v), (2.30)

Λ(u⊗ yγ[zv])− Λ(u⊗ y)γ[zv] = Λ(γ[uy]z ⊗ v)− γ[uy]Λ(z ⊗ v) (2.31)

and

φ[γ[u]v] = φ[uγ[v]]. (2.32)

Then

a. Each Xr(u) commutes with Γγ,Λ(B, φ) if and only if conditions (2.29), (2.30), (2.31), and

(2.32) hold. Note that if γ is scalar-valued, the third condition is true automatically.

b. If φ is tracial and each Xr(u) commutes with Γγ,Λ(B, φ), then the vacuum state is tracial on

Γγ,Λ(B, φ).
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c. If the vacuum state is tracial on Γγ,Λ(B, φ), then conditions (2.29), (2.30), and (2.31) hold.

Under the assumptions in (b), all the conclusions in Proposition 2.5.0.2 hold, the map S extends

to an anti-linear isometry on Fγ,φ(B), and the map A 7→ SA∗S implements the canonical anti-

isomorphism between Γγ,Λ(B, φ) and its commutant.

Proof. For part (a), note that since we are working on a Fock space with depth two action, to show

that X(u)Xr(v) = Xr(v)X(u) it suffices to consider their actions on tensors of length 0, 1, and 2.

A calculation shows that this is equivalent to conditions (2.29)-(2.32) together with the previously

obtained (2.2).

For part (c), if the vacuum state is tracial, the joint free cumulants are cyclically symmetric.

Using Proposition 2.2.3.2 for cumulants of order up to 5, we obtain the conditions (2.29)-(2.31).

Part (b), and the rest of the statements, follow from Theorem 2.5.0.2.

Note that for Λ(u ⊗ v) = Λ(u)v, the first condition says (Λ(v)u)∗ = Λ(u)v, which is only

satisfied in trivial cases.

Remark 2.5.0.4. In the setting of Example 2.1.1.1, condition (2.29) translates to

λ(s, x, y) = λ(s, y, x),

so that λ is conjugate-symmetric in all of its arguments. Condition (2.31) holds automatically

because Λ is self-adjoint and using (2.29). From the final condition,

w(s, t) = w(t, s),

so if γ is scalar-valued, it has to be a multiple of φ.

Example 2.5.0.5. It is easy to verify that in Example 2.1.3.1, the vacuum state is always tracial.
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2.5.1 Further Examples

Example 2.5.1.1. Let γ = 0 and Λ(f ⊗ g) = fg. For any (B, φ), the corresponding algebra

of operators on a Fock space is the free (compound) Poisson algebra, a particular case of the

constructions in the Appendix of [22] (for q = 0) or Proposition 23 in [23] (for the scalar case).

See also [24].

The following theorem states that in the tracial case, the algebra for γ = 0 can always be

brought into the form of the preceding example. Note that the initial algebra structure of B plays

no part in this result.

Theorem 2.5.1.2. Suppose that γ = 0, and the vacuum state is tracial. Denote by H the inner

product space B with the involution and the inner product 〈f, g〉 = φ[g∗f ] satisfying the relation

〈f, g〉 = 〈g∗, f ∗〉 .

Denote

f · g = Λ(f ⊗ g). (2.33)

Then

a. The free cumulants are

R[X(f1), . . . , X(fn)] = 〈f1, f2 · . . . · fn〉 .

b. We have an orthogonal decomposition H = Z ⊕ P such that for f ∈ Zsa, X(f) are

semicircular, with orthogonal f corresponding to free X(f), and are also free from X(g)

with g ∈ P .

c. Suppose in addition that for some M , and all f, g ∈ H,

〈Λ(f ⊗ g),Λ(f ⊗ g)〉 ≤M ‖f‖2
B 〈g, g〉 .
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Then for f ∈ Psa, X(f) has a centered free compound Poisson distribution, and in particu-

lar a centered free Poisson distribution if f is a projection. Moreover, if f · g = 0 then X(f)

and X(g) are free.

Proof. The notation (2.33) is meant to suggest that we consider the binary operation Λ as a mul-

tiplication on H (different from a multiplication it may have inherited from B). Indeed, equations

(2.29), (2.30), and Proposition 2.1.0.5 say that

(f · g)∗ = g∗ · f ∗, (f · g) · h = f · (g · h), 〈f · g, h〉 = 〈g, f ∗ · h〉 .

That is, (H, ·, ∗) is an associative star-algebra (linearity/distributivity is immediate), which is rep-

resented onH by left multiplication operators. We immediately get

R′[X(f1), . . . , X(fn−1)]fn = f1 · f2 · . . . · fn

and so part (a).

Next, denote

Z = {f ∈ H : ∀g ∈ H, g · f = 0}

and

P = Span({f · g : f, g ∈ H}).

Clearly both of them are subspaces (and in fact ideals). Also, using the properties above, one sees

that Z and P are orthogonal complements of each other, andH = Z ⊕ P . Moreover, clearly

Z∗ = {f ∈ H : ∀g ∈ H, f · g = 0} ,

and again using the properties above one sees that (Z∗)∗ = Z∗, in other words that Z is self-

adjoint. Clearly P is self-adjoint. Finally, by the uniqueness of the direct sum decomposition it

follows that if f = z + p is self-adjoint, with z ∈ Z and p ∈ P , then z and p are also self-adjoint.
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For f1, . . . , fn ∈ Hsa with at least one of them in Z ,

R[X(f1), . . . , X(fn)] = δn=2 〈f1, f2〉

and is zero unless both f1, f2 ∈ Z . Part (b) follows.

Under the boundedness assumption in part (c), P satisfies all the axioms of a Hilbert algebra

(Chapters 5 and 6 of [25]). Then we can complete P to a von Neumann algebra represented on H

(since it acts as zero on Z , it is also represented on P) by left multiplication. Moreover, we have

a semi-finite trace ψ on this von Neumann algebra such that 〈f, g〉 = ψ[g∗ · f ]. So in this case for

self-adjoint elements,

R[X(f1), . . . , X(fn)] = ψ[f1 · f2 · . . . · fn].

Part (c) now follows from the results cited in the preceding example.

Proposition 2.5.1.3. Let η, λ be central elements in B, and V be a ∗-linear map on B, unitary with

respect to the inner product coming from φ. Then for γ[f ] = ηf and

Λ(f ⊗ g) = V −1[(V f)λ(V g)],

the vacuum state on the corresponding algebra is tracial.

Proof.

Λ(f ⊗ g)∗ = (V −1[(V f)λ(V g)])∗ = V −1[(V g∗)λ(V f ∗)] = Λ(g∗ ⊗ f ∗),

fγ[hg]− γ[fh]g = fηhg − ηfhg = 0

= V −1[(V f)λ(V V −1[(V h)λ(V g)])]− V −1[(V V −1[(V f)λ(V h)])λ(V g)]

= Λ(f ⊗ Λ(h⊗ g))− Λ(Λ(f ⊗ h)⊗ g),
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Λ(f ⊗ hγ[kg])− Λ(f ⊗ h)γ[kg] = V −1[(V f)λ(V hηkg)]− V −1[(V f)λ(V h)](V −1V )(ηkg)

= 0 = V −1[(V ηfhk)λ(V g)]− (V −1V )(ηfh)V −1[(V k)λ(V g)]

= Λ(γ[fh]k ⊗ g)− γ[fh]Λ(k ⊗ g),

and the last condition from Theorem 2.5.0.3 follows immediately from centrality of η.

In the finite-dimensional, commuting setting of [1], all examples of tracial algebras for such

γ are of this form. It is easy to see, for example by considering group algebras, that in the non-

commutative setting that is not the case. The following proposition provides a general description

of such algebras.

Proposition 2.5.1.4. Assume that B is unital and the vacuum state is tracial.

a. If Λ(f ⊗ g) = λfg for λ central, then γ[f ] = ηf for η central, and we are in the setting of

Example 2.1.3.1.

b. Suppose γ[f ] = ηf for η central. Then we have an orthogonal decomposition

H = (B, 〈·, ·〉φ) = N ⊕N⊥ = Z ⊕ P ⊕N⊥,

so that on Z and P , the behavior is as in the preceding theorem. On N⊥, Λ(f ⊗ g) = λfg

for λ central, and we are in the setting of Example 2.1.3.1. If f ∈ N⊥ and either g ∈ N or

g ∈ N⊥ with fg = gf = 0, X(f) and X(g) are free.

Proof. Assuming condition (a) and the traciality of the vacuum state, by (2.30), fγ[hg]−γ[fh]g =

0. So γ[g] = γ[1]g = gγ[1], and condition (b) follows.

Assuming condition (b), second condition in Proposition 2.1.0.5 reads

ηg∗Λ(b⊗ f) = ηΛ(b∗ ⊗ g)∗f = ηΛ(g∗ ⊗ b)f.

Therefore ηΛ(b⊗ f) = ηλbf , where λ = Λ(1⊗ 1).
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Let

N = {f ∈ B : ηf = 0} .

Then N is a subspace and an ideal, and on it γ = 0, so the arguments on the theorem above

apply. Restricted to N⊥, multiplication by η is injective (although not necessarily surjective).

Since by (2.29), ηλg∗b = ηg∗bλ∗, it follows that λ is, on this subspace, self-adjoint and central,

and condition (a) on this subspace follows.

Under assumption (b), all the results of the preceding theorem which do not involve free cumu-

lants or freeness still hold. Note thatN is also an ideal with respect to ·. For f1, . . . , fn ∈ N ∪N⊥

with at least one element from N ,

R′[X(f1), . . . , X(fn)] = f1 · f2 · . . . · fn

as before, and

R[X(f1), . . . , X(fn)] = 〈f1, f2 · . . . · fn〉 .

Note that since the vacuum state is tracial, the free cumulants are cyclically symmetric. So if

f1, . . . , fn ∈ N ∪N⊥

with at least one element from each ofN ,N⊥, we may assume that f1 ∈ N⊥ and f2 · . . . ·fn ∈ N .

Then their inner product is zero, which implies freeness.
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3. The Secondary Framework

3.1 The Secondary Construction

For the second phase, we’ve identified a specific sub-class of operators which holds many

desirable properties, such as a free convolution relationship between the distributions of the X(f)

with respect to the vacuum state and those of the underlying f with respect to φ. More details will

be given in the next section.

For the purposes of allowing non-unital algebras, we opted to start with a ∗-algebra with a

linear functional on it (if unital or a C*-algebra, we can require φ to be a state), but construct the

Fock space over the Hilbert space obtained through the GNS construction.

Construction 3.1.0.1. Let (B, φ) be a noncommutative ∗-probability space, so that B is a ∗-

algebra, and φ is a (not necessarily faithful) state on it. Using the GNS construction for B, we

may construct a pointed Hilbert spaceH (that is, a Hilbert space with a unit vector Ω) such that

• B acts onH by densely defined, possibly unbounded operators (whose domains contain Ω).

• Ω is cyclic for B, and φ = 〈·Ω,Ω〉.

Throughout, we will assume that the representation of B on H is faithful. Denote by H◦ the

orthogonal complement inH of CΩ. Note that for any f ∈ B, fΩ− φ[f ]Ω ∈ H◦. Denote

B◦ = {g ∈ B : φ[g] = 0} ,

so that B = B◦⊕C. Finally denote Λ(f, g) = fg− φ[fg] a (not necessarily bounded) operator on

H.

Fix t ≥ 0. On the Fock space F(H◦,Ω; t) = CΩ⊕
⊕∞

n=1(H◦)⊗n, define the inner product by

the linear extension of

〈ξ1 ⊗ . . .⊗ ξn, η1 ⊗ . . .⊗ ηn〉t = δn=k(t+ 1)tn−1

n∏
i=1

〈ξi, ηi〉 .
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For f ∈ B, define

a+(f)(ξ1 ⊗ . . .⊗ ξn) = (fΩ− φ[f ]Ω)⊗ ξ1 ⊗ . . .⊗ ξn, a+(f)(Ω) = (fΩ− φ[f ]Ω),

a−φ (f)(ξ1 ⊗ . . .⊗ ξn) = 〈fξ1,Ω〉 ξ2 ⊗ . . .⊗ ξn,

a−(f) =


ta−φ (f) on (H◦)⊗n, n ≥ 2,

(1 + t)a−φ (f) on (H◦)⊗n, n = 1,

0 on (H◦)⊗n, n = 0,

a0(f)(ξ1 ⊗ . . .⊗ ξn) = (fξ1 − 〈fξ1,Ω〉Ω)⊗ ξ2 ⊗ . . .⊗ ξn, a0(f)Ω = φ[f ]Ω.

Lemma 3.1.0.2. For each t ≥ 0 and f ∈ B, denote

X(f, t) = a+(f) + a−(f) + a0(f) + tφ[f ]

Then

a. X(f, t) = X(f − φ[f ], t) + (1 + t)φ[f ].

b. If B is a C∗-algebra, then, denoting by ‖·‖t the operator norm on F(H◦,Ω; t), we have

‖X(f, t)‖t ≤ (1 + 2
√

1 + t+ t) ‖f‖B.

Proof. The proof of part (a) is straightforward.

For part (b), we first apply Proposition 2.4.0.3 with the linear functional (1 + t)φ and the map

γ = −φ, which gives ∥∥a+(f)
∥∥
t

=
∥∥a−(f)

∥∥
t
≤
√

1 + t ‖f‖B .

Next, by the Pythagorean theorem, it suffices to check the behavior of a0(f) on each (H◦)⊗n. For

n = 0, ‖a0(f)Ω‖ ≤ ‖f‖B.

For n = 1 and gΩ ∈ H◦, since the second expression is the projection of fgΩ onto H◦, we
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have

∥∥a0(f)
∥∥
t

= ‖fgΩ− 〈fgΩ,Ω〉Ω‖t ≤ ‖fgΩ‖t

=
√

(1 + t) 〈fgΩ, fgΩ〉 ≤ ‖f‖B ‖gΩ‖t .

For n ≥ 2, notice that the deformed inner product onH⊗n is just the canonical tensor inner product

times (1 + t)tn−1. Since a0(f) = a0
1(f)⊗ I⊗(n−1), where a0

1(f) = a0(f) restricted to H, we have

‖a0(f)‖t ≤ ‖f‖B ‖gΩ‖t · 1n−1 = ‖f‖B ‖gΩ‖t.

Finally, it is clear that ‖φ[f ]tI‖t ≤ t ‖f‖B. Apply the triangle inequality to X(f, t).

Notation 3.1.0.3. Denote

Γa(B, φ; t) = Alg(X(f, t) : f ∈ B) = Alg(X(f, t) : f ∈ Bsa).

Note that it is also equal to the algebra generated by {X(f, t) : f ∈ B◦} and 1. Denote by

Γw(B, φ; t) = W ∗(X(f, t) : f ∈ B)

the corresponding von Neumann algebra. The vacuum state Φ = 〈·Ω,Ω〉 is a state on each of these

algebras.

Remark 3.1.0.4. Except for B◦ not necessarily being an algebra, and φ not necessarily being

faithful, the construction above fits into the primary framework, with the linear functional (1+ t)φ,

the map γ = −φ, and Λ(f ⊗ g) = fg − φ[fg]. For f, fj ∈ B◦, the following are the same results

from before, but translated and simplified to this specific setting:

• (Lemma 2.1.0.3) The inner product is non-degenerate for t > 0.

• (Proposition 2.1.0.5) Each X(f ∗, t) = X(f, t)∗ in the natural sense.
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• (Lemma 2.2.2.2) The Boolean cumulants are

BΦ[X(f1, t), ..., X(fn, t)] = (1 + t)
∑

π∈ÑCns(n)

t|π|−1
∏
V ∈π

Φ[W (V )], (3.1)

where for V =
{
fi(1), fi(2), . . . , fi(k)

}
with i(1) < . . . < i(k) and k ≥ 2,

Φ[W (V )] =
〈
a−φ (fi(1))a

0(fi(2)) . . . a
0(fi(k−1))a

+(fi(k))Ω,Ω
〉

=
〈
fi(1)Λ(fi(2),Λ(fi(3), . . . ,Λ(fi(k−1), fi(k))))Ω,Ω

〉
,

and for k = 2, Φ[W (V )] = 〈fi(1)fi(2)Ω,Ω〉.

• (Proposition 2.2.3.2) The free cumulants are

RΦ[X(f1, t), ..., X(fn, t)] = (1 + t)
∑

π∈ÑCns(n)

(−1)|π|−1
∏
V ∈π

Φ[W (V )].

• (Proposition 2.5.0.2, Theorem 2.5.0.3) Ω is cyclic and separating for Γw(B, φ; t). Denote

S : F(H◦,Ω; t)→ F(H◦,Ω; t), S(f1⊗. . .⊗fn) = f ∗n⊗. . .⊗f ∗1 andXr(f, t) = SX(f ∗, t)S.

Then

W (f1 ⊗ . . .⊗ fn)∗ = W (f ∗n ⊗ . . .⊗ f ∗1 ),

each Xr(f, t) commutes with Γw(B, φ; t), and Ω is cyclic for the algebra generated by

{Xr(f, t) : f ∈ B◦}. If φ is tracial, then Φ is tracial, and S is an isometry.

Next we consider the case t = 0. Compare with Proposition 4.8 in [14], Proposition A.9 in

[26], Lemma 3.9 in [9], Lemma 7.2 and Theorem 7.8 in [27].

Proposition 3.1.0.5. The non-commutative star-probability space (Γa(B, φ; 0),Φ) is isomorphic

to (B, φ). If B is a C∗-algebra, then Γa(B, φ; 0) = Γc(B, φ; 0), and if B is a von Neumann algebra,

then Γa(B, φ; 0) = Γw(B, φ; 0).

Proof. If t = 0, the Fock space is simply CΩ⊕H◦ ' H. A short calculation shows that for ξ ∈ H,
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X(f)ξ = fξ, and 〈X(f)Ω,Ω〉 = φ[f ]. The remaining claims follow.

Corollary 3.1.0.6. Let (B, φ) be a noncommutative probability space, represented on the pointed

Hilbert space (H,Ω) with Ω cyclic and implementing φ. Let f1, . . . , fn ∈ B◦. Denote

Λ(f, g) = fg − φ[fg] ∈ L(H).

Then we have the formula for the Boolean cumulants

B[f1, . . . , fn] = 〈f1Λ(f2,Λ(f3, . . . ,Λ(fn−1, fn)))Ω,Ω〉 .

Proof. Apply equation (3.1) with t = 0.

Construction 3.1.0.7. Let B, φ,H be as in Construction 3.1.0.1. On F(H◦,Ω; t), define the sim-

pler inner product

〈ξ1 ⊗ . . .⊗ ξn, η1 ⊗ . . .⊗ ηn〉t = δn=kt
n

n∏
i=1

〈ξi, ηi〉 .

For f ∈ B, define a+(f) and a0(f) as in Construction 3.1.0.1, and a−(f) = ta−φ (f). Denote

Y (f, t) = a+(f) + a−(f) + a0(f) + tφ[f ]

as before, and let Ψ be the corresponding vacuum state.

This construction also fits into the framework of the primary phase, with the linear functional

tφ and the map γ = 0. Therefore, as in Remark 3.1.0.4,

• The inner product 〈·, ·〉t is non-degenerate for t > 0.

• Each Y (f ∗, t) = Y (f, t)∗ in the natural sense.
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• For fj ∈ B◦, the free cumulants are RΨ[Y (f1, t), Y (f2, t)] = tφ[f1f2] and

RΨ[Y (f1, t), . . . , Y (fn, t)] = t 〈f1Λ(f2,Λ(f3, . . . ,Λ(fn−1, fn)))Ω,Ω〉 (3.2)

RΨ[Y (f1, t), Y (f2, t)] = t〈f1f2Ω,Ω〉.

• Unless dimB◦ ≤ 1 or φ is a homomorphism, Ψ is not tracial. Indeed, applying Theorem 37

from [19] with γ = 0 and Λ(f ⊗ g) = fg − φ[fg], the vacuum state is tracial only if φ is

tracial and for any f, g, h ∈ B◦, φ[fg]h − fφ[gh] = 0. Suppose dimB◦ ≥ 2. Let f ∈ B◦,

and h ∈ B◦ linearly independent from it. Then for any g ∈ B◦, φ[fg] = 0, in other words B◦

is a subalgebra. This implies that φ is a homomorphism.

We would like Φ and Ψ to be defined on the same algebra. Thus let

T (B, φ) = T (B◦) = C1⊕
⊕

(B◦)⊗n

be the tensor algebra of B◦ (the first notation keeps track of the dependence on φ). Then the maps

πΦ,t : f1 ⊗ . . .⊗ fn 7→ X(f1, t)X(f2, t) . . . X(fn, t)

πΨ,t : f1 ⊗ . . .⊗ fn 7→ Y (f1, t)Y (f2, t) . . . Y (fn, t)

are ∗-representations of T (B, φ) on the Fock spaces from Constructions 3.1.0.1 and 3.1.0.7, and

map it onto the appropriate versions of Γa(B, φ, t). Under our assumptions on (B, φ), these repre-

sentations are not necessarily faithful. But we can still pull Φ,Ψ back to states on T (B, φ), denoted

by Φt, Ψt. Then W ∗(T (B◦)) in its representation on L2(T (B◦),Φt) is isomorphic to Γw(B, φ, t)

from Construction 3.1.0.1, whileW ∗(T (B◦)) in its representation on L2(T (B◦),Ψt) is isomorphic

to Γw(B, φ, t) from Construction 3.1.0.7.

It will be convenient to denote the element f1 ⊗ . . . ⊗ fn ∈ T (B, φ) by X(f1) . . . X(fn).

Note that this notation is consistent with the multiplication and involution on T (B, φ). Then, for
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example, we have the equality of joint distributions

µΦ
X(f1,t),...X(fn,t) = µΦt

X(f1),...X(fn).

Proposition 3.1.0.8. Suppose the representation of B onH is faithful. Then

a. If f ∈ B◦ and πΦ[f ]Ω = 0, then f = 0.

b. Φt, and therefore the representation πΦ, are faithful.

Proof. For (a), since Ω is separating for Γa(B, φ, t), πΦ,t[f ] = 0. Thus in particular, for ξ ∈ H◦,

X(f, t)ξ = fΩ⊗ ξ + (fξ − 〈fξ,Ω〉Ω) + 〈fξ,Ω〉Ω = 0.

It follows that for any ξ ∈ H, fξ = 0, and therefore f = 0.

For (b), let ~ξ ∈ T (B◦), and suppose that

Φt[(~ξ)
∗~ξ] = 〈πΦ[ξ]Ω, πΦ[ξ]Ω〉 = 0.

Denote the component of ~ξ in the highest tensor power by
∑N

i=1 f
(i)
1 ⊗ . . . ⊗ f

(i)
n . It suffices to

show that this sum is zero.

0 = πΦ[~ξ]Ω =
N∑
i=1

X(f
(i)
1 , t) . . . X(f (i)

n , t)Ω + terms in lower tensor components

=
N∑
i=1

f
(i)
1 Ω⊗ . . .⊗ f (i)

n Ω + terms in lower tensor components,

and so
N∑
i=1

f
(i)
1 Ω⊗ . . .⊗ f (i)

n Ω = 0

as an element of (H◦)⊗n. Let {gkΩ : 1 ≤ k ≤ K} be a basis for the subspace

Span
{
f

(i)
j Ω : 1 ≤ i ≤ N, 1 ≤ j ≤ n

}
⊆ H◦.
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In particular, for some coefficients, f (i)
j Ω =

∑K
k=1 c

(i)
j,kgkΩ. It follows from part (a) that then

f
(i)
j =

∑K
k=1 c

(i)
j,kgk. So if

0 =
N∑
i=1

f
(i)
1 Ω⊗ . . .⊗ f (i)

n Ω =
N∑
i=1

∑
k:[n]→[K]

n∏
j=1

c
(i)
j,k(j)gk(1)Ω⊗ . . .⊗ gk(n)Ω,

then each
∑N

i=1

∏n
j=1 c

(i)
j,k(j) = 0, and therefore

∑N
i=1 f

(i)
1 ⊗ . . .⊗ f

(i)
n = 0.

For the second phase, we’ve adapted the techniques of these next papers. The first paper con-

cerns a Fock space construction for which the von Neumann algebra generated by all t-gaussians (a

special subclass of X(f) operators) is the entire algebra of bounded operators on the Fock space.

The second paper we shall highlight explores the von Neumann algebras generated by a finite

family of t-gaussians, through both free product and conditionally free product constructions.

3.1.1 Wysoczański (2006) [5]

The author constructs the t-free non-commutative Gaussian random variables as follows. Fix

t ≥ 0 and a separable Hilbert space H as the complexification of a real Hilbert space HR, and

define the Fock space Ft(H) as the closure of

C⊕
∞⊕
n=1

H⊗n

under the deformed inner product

〈x1 ⊗ ...⊗ xn, y1 ⊗ ...⊗ yk〉t := δn=kt
n−1

n∏
i=1

〈xi, yi〉

〈Ω,Ω〉t := 1.

Note the similarity in deformation to the inner product of our second construction.

For f ∈ HR, the creation operator a+(f) is defined in the same way as the previously discussed
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constructions, while the annihilation operator is defined by the linear (over Ft(H)) extension of:

a−(f)(x1 ⊗ ...⊗ xn) := t〈x1, f〉x2 ⊗ ...⊗ xn

a−(f)(x) := 〈x, f〉Ω

a−(f)(Ω) := 0.

As usual, the annihilator is the adjoint of the creator, so the operator X(f, t) = a+(f) + a−(f) is

self-adjoint.

The author shows that the von Neumann algebra Mt generated by {X(f, t) | f ∈ HR} is just

B(Ft(H)) in three major steps. First, he showed that the orthogonal projection onto CΩ is in

Mt by choosing a sequence in Mt which converges to it in the strong operator topology (see the

next section for details). Next, he showed that Ω is cyclic for Mt, that is, the span of the vectors{(∏k
i=1 X(fi, t)

)
Ω
∣∣∣ fi ∈ H, k ∈ N

}
is dense in Ft(H). Finally, he proves a standard result: if

the orthogonal projection onto a cyclic vector for a von Neumann algebra belongs to that algebra,

then its commutant is just CI , so the vNA must be B(Ft(H)). In our construction, if we are able

to prove the first two steps, the third will immediately follow.

3.1.2 Ricard (2006) [6]

The author begins with the same Fock space construction Ft(H) and t-gaussian operators

X(f, t) as Wysoczański, except H is a finite-dimensional complexification of a real Hilbert space

HR, and the von Neumann algebra of interest is

Γt,n := W ∗{X(f, t) | f ∈ HR} = W ∗{X(e1, t), ..., X(en, t)},

where {e1, ..., en} form a basis forHR.

He begins with the simple case whereH = C, so the von Neumann algebra Γt,1 is generated by

only one operator. The author shows that the map ρ : Γt,1 → Γ1,1 given by ρ(X(f, t)) =
√
tX(f, 1)

extends to a normal representation, by showing that the spectral measure of
√
tX(f, 1) is absolutely
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continuous with respect to that of X(f, t). Moreover, Γt,n contains n representations of Γt,1, one

for each X(ei, t), which we will denote by Ai.

With this in mind, there are two states given on each Ai: the vacuum state of Γt,n restricted to

Ai (denoted φ) and the vacuum state on Γ1,1 pulled back to Ai via the representation (denoted ψ).

The von Neumann subalgebras (Ai, φ, ψ) ⊂ Γt,n are conditionally free with respect to φ.

The main objective is to show that for n ≥ 2,

Γt,n =


Γ1,n if t ∈

[
n

n+
√
n
, n
n−
√
n

]
Γ1,n ⊕B(`2) otherwise.

(It is well known that Γ1,n = L(Fn), the free group factor with n generators. Subsection 1.2.4 has

everything one needs in order to show this.)

To begin, the author identifies the orthonormal polynomials for X(ei, t) with respect to φ.

Denoting by Un the Chebyshev polynomials of the second type of degree n, the orthonormal poly-

nomials are

v0(X) = 1

v1(X) = X =
√
tU1

(
X

2
√
t

)
vn(X) =

√
t

(
Un

(
X

2
√
t

)
−
(

1

t
− 1

)
Un−2

(
X

2
√
t

))
for n ≥ 2.

The orthonormal polynomials for
√
tX(ei, 1) are un(X) = Un

(
X

2
√
t

)
. The author uses these to

show that for i(1) 6= ... 6= i(`) and αj ≥ 1,

uα1(X(ei(1), t))...uα`−1
(X(ei(`−1), t))vα`(X(ei(`), t))Ω =

(
e⊗α1

i(1)

)
⊗ ...⊗

(
e⊗α`i(`)

)
.

This is used to prove that (Ai, φ, ψ) ⊂ Γt,n are conditionally free with respect to φ.
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The author then defined a new functional on B(Ft(H)) by (letting α = 1
t
− 1)

η = α

((
n+

1

α

)
−
(
X(e1, t)

2 + ...+X(en, t)
2
))

Ω,

ψ̃(X) = 〈XΩ, η〉,

which he shows is equivalent to the vacuum state on C1,n pulled back to Ct,n (the C*-algebras

generated by the usual free gaussians and the t-gaussians, respectively) via the representation dis-

cussed earlier. This means that same representation extends to a normal, surjective representation

Γt,n → Γ1,n, hence Γt,n must have a direct summand isomorphic to Γ1,n.

Then the author proceeds by cases, first t /∈
[

n
n+
√
n
, n
n−
√
n

]
. First, by showing that the C*-

algebra Ct,n contains a nonzero compact operator, we know that the von Neumann algebra Γt,n is

a direct sum of two algebras: Γ1,n and either B(K) for K finite-dimensional or B(`2). He then

shows that, for 1− q the central support of the representation ρ, qΩ is nonzero, and uses the above

fact regarding the state 〈XΩ, η〉 to show that qΩ is in ker
(
X(e1, t)

2 + ...+X(en, t)
2 − (n+ 1

α
)
)
,

which he also proved is one-dimensional. Hence, qΓt,n contains a one-dimensional projection onto

a cyclic vector, so it is isomorphic to B(`2).

For the case t ∈
(

n
n+
√
n
, n
n−
√
n

)
, the author first shows that φ is faithful on Γt,n from which

it follows that Γt,n contains no compact operator and Ct,n and C1,n are isomorphic. Finally, by

showing that the representation ρ is faithful, the same is shown for the corresponding von Neumann

algebras.

The case for t = n
n±
√
n

is quite different. The author defines a normal linear form on Γ1,n by

φ̃(x) =

〈
xΩ,

∑
k≥0

αk
∑
|i|=2k

i2j+1=i2j+2

ei(1) ⊗ ...⊗ ei(2k)

〉
.

Then he shows that the GNS construction of (Γ1,n, φ̃) gives the representation ρ−1 (that is, with

image Γt,n).

Finally, the author discusses an extension of these results, one which we aim to adapt in our
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construction. ForAi = L∞(Ii, µi) (Ii bounded µi-measurable subsets of R), we let φi be the usual

integration and ψi normal states onAi, so each ψi has a density fi with respect to φi. They consider

the algebraic conditionally free product Ã = ∗ni=1(Ai, φi, ψi) and its corresponding von Neumann

conditionally free product A. One drawback is that φ is not faithful on A in general, not even for

t-gaussians. The injections ii : Ai → A are still normal, isometric, and state-preserving. However,

there is no conditional expectation A → Ai which is state-preserving.

First, if each density fi is in either L2(µi) or L∞(µi), the free product state ψ extends to a

normal state onA. As a result, if each fi is in L2(µi), the conditionally free product von Neumann

algebra has a direct summand isomorphic to the usual free product. On the other hand, if the

densities are bounded and the distribution of

c := 1 +
n∑
i=1

(
fi(1i)− 1i

)
( where 1i = identity function on Ii)

with respect to φ does not have an atom at 0, then the conditionally free product von Neumann

algebra is isomorphic to the usual free product.

3.2 Cumulants, Convolutions, and Independence

3.2.1 The Distributions as Free Additive Convolution Powers

The first important property of this construction is that the free cumulants of the X(f) can be

easily expressed in terms of the free cumulants of the f . In fact, much more is true.

Proposition 3.2.1.1. Let {f1, . . . , fn} ⊂ B. Then

RΦ[X(f1, t), . . . , X(fn, t)] = (1 + t)Rφ[f1, . . . , fn].

Therefore we have the relation between joint distributions

µΦ
X(f1,t),...X(fn,t) = µ

�(1+t)
f1,...,fn

.
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Proof. First, by Lemma 3.1.0.2A, the fact that C is freely independent from all subalgebras of a

non-commutative probability space, the fact that free independence implies mixed free cumulants

are zero, and linearity, we only need to prove this for {f1, . . . , fn} ⊂ B◦.

By Proposition 3.1.0.5, we have Rφ[f1, . . . , fn] = RΦ[X(f1, 0), . . . , X(fn, 0)]. From Equa-

tion (3.1.0.4), we see that RΦ[X(f1, t), . . . , X(fn, t)] = (1 + t)RΦ[X(f1, 0), . . . , X(fn, 0)].

Corollary 3.2.1.2. Let (B, φ) be a unital star-probability space. For every t ≥ 0, there is a unital

star-probability space (Bt, φt) and a star-linear map

X(·, t) : (B, φ)→ (Bt, φt)

such that for any f1, . . . , fn ∈ B, the joint distribution of X(f1, t), . . . , X(fn, t) in (Bt, φt) is the

(1 + t)’th free convolution power of the joint distribution of f1, . . . , fn in (B, φ).

Remark 3.2.1.3. Let (A,Φ, C) be a C-valued probability space. For every c.p. map η on C, one

can give a version of Construction 3.1.0.1, with the inner product

〈f1 ⊗ . . .⊗ fn, g1 ⊗ . . .⊗ gn〉η

= δn=k((1 + η) ◦ E)
[
g∗n(η ◦ E)

[
g∗n−1(η ◦ E) [. . . (η ◦ E)[g∗1f1] . . .] fn−1

]
fn
]

on CΩ ⊕
⊕∞

n=1(A◦)⊗n (but not on CΩ ⊕
⊕∞

n=1(A◦)⊗Cn). Then the corresponding forms of

Lemma 3.1.0.2, Proposition 3.1.0.5, and Corollary 3.1.0.6 hold with the same proof. In Propo-

sition 3.2.1.1, the formula

R[X(f1, η), . . . , X(fn, η)] = (1 + η)[R[X(f1, 0), . . . , X(fn, 0)]].

holds as well. Note however that, according to the standard definition of C-valued distribution,

this is not sufficient to claim that the joint distribution of the variables on the left-hand side is the

(1 + η)’th free convolution power of the joint distribution of the variables on the right-hand side.
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Example 3.2.1.4. If p1, . . . , pn are orthogonal projections adding up to the identity, then so are

X(p1), . . ., X(pn). Therefore the joint distribution of X(p1, t), . . . , X(pn, t) is free multinomial

in the sense of Section 4.6 of [1], that is, the joint distribution is the tth free additive convolution

power of the (classic) multinomial distribution

µ(x) = q1δe1 + q2δe2 + ...+ qdδed .

3.2.2 Conditionally Free Cumulants

Proposition 3.2.2.1. Let {f1, . . . , fn} ⊂ B◦.

a. The free cumulants with respect to the state Ψt are

RΨt [X(f1), . . . , X(fn)] = t 〈f1Λ(f2,Λ(f3, . . . ,Λ(fn−1, fn)))Ω,Ω〉

= tBφ[f1, . . . , fn].

Therefore we have the relation between joint distributions

µΨt
X(f1),...X(fn) = Bt(µf1,...,fn)]t =

(
µ
�(1+t)
f1,...,fn

)] t
1+t

.

b. The conditionally free cumulants with respect to the pair (Φ,Ψ) are

R(Φt,Ψt)[X(f1), . . . , X(fn)] = (1 + t) 〈f1Λ(f2,Λ(f3, . . . ,Λ(fn−1, fn)))Ω,Ω〉

= (1 + t)Bφ[f1, . . . , fn].

Proof. (a) Combine equation (3.2) with Corollary 3.1.0.6. Next, using Proposition 3.5, equation
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(6.11), and Definition 4.1 from [28],

BΨt [X(f1), . . . , X(fn)] =
∑

π∈ÑC(n)

RΨt
π [X(f1), . . . , X(fn)]

=
∑

π∈ÑC(n)

t|π|Bφ
π [f1, . . . , fn]

= tBBt(µf1,...,fn )

= BBt(µf1,...,fn )]t

= B(
µ
�(1+t)
f1,...,fn

)] t
1+t
.

(b) First, R(Φt,Ψt)[X(f1)] = 0. Next,

∑
π∈Int(n)

BΦt [X(f1), . . . , X(fn)] = Φt[X(f1) . . . X(fn)]

=
∑

π∈NC(n)

( ∏
V`∈π (inner)

RΨt [V`]

)( ∏
V`∈π (outer)

RΦt,Ψt [V`]

)
.

The left-hand side is equal to

∑
π∈Int(n)

∏
V ∈π

(1 + t)
∑

σ∈ÑCns(V )

t|σ|−1
∏
W∈σ

Bφ[W ]

 ,

while the right-hand side, by Part A, is equal to

∑
π∈NC(n)

( ∏
V`∈π (inner)

tBφ[V`]

)( ∏
V`∈π (outer)

RΦt,Ψt [V`]

)
.

From this, the claim inductively follows, since each π ∈ NC(n) can be uniquely constructed from

an interval partition by replacing each block V with some σ ∈ ÑC(V ), a partition of the elements

of the block.

Corollary 3.2.2.2.
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a. Suppose {f1, . . . , fn} are freely independent in (B, φ). Then {X(f1), . . . , X(fn)} are free

in (T (B, φ),Φt).

b. Suppose {f1, . . . , fn} ⊂ B◦ are Boolean independent in (B, φ). Then {X(f1), . . . , X(fn)}

are freely independent in (T (B, φ),Ψt) and conditionally free in (T (B, φ),Φt,Ψt).

Proof. Using the characterizations of free, Boolean, and conditionally free independence in terms

of their respective cumulants, Part A follows from Proposition 3.2.1.1, while Part B follows from

Proposition 3.2.2.1.

3.3 von Neumann Algebras

We now have a more thorough understanding of the distributions of X(f, t). In this section,

we proceed to investigate the von Neumann algebras generated by {X(fi, t)}ni=1 for a fixed t > 0

for several examples of *-algebras B and generating sets {fi} ⊂ (B◦)sa.

3.3.1 B = C2

In this section, fix α ∈ (0, 1). Let p ∈ M2(C) be a projection such that p11 = α. The algebra

B generated by p and 1 is isomorphic to C2, and the vector (1, 0) is cyclic for it. With φ the vector

state of (1, 0), B◦ is spanned by p◦ = p− α, and B ' C is also generated by p◦ and 1. So Γ(B) is

generated by a single element X(p◦) and 1. The explicit forms of p and p◦ are the matrices

p =

 α
√
α(1− α)√

α(1− α) 1− α

 , and p◦ =

 0
√
α(1− α)√

α(1− α) 1− 2α

 .

Without loss of generality, we may assume that α ≤ 1
2
.

Theorem 3.3.1.1. a. The distribution of p is Bernoulli with parameter α.

b. The distribution of X(p◦, t) is

dµΦ
X(p◦,t) =

(t+ 1)
√

4tα(1− α)−
(
(1− 2α)− x

)2

2π(α(1 + t) + x)((1− α)(1 + t)− x)
dx, (3.3)
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with support
[
1− 2α− 2

√
tα(1− α), 1− 2α + 2

√
tα(1− α)

]
and atoms

µΦ
X(p◦,t)({−α(1 + t)}) = max{1− α(1 + t), 0}

µΦ
X(p◦,t)({(1− α)(1 + t)}) = max{α(1 + t)− t, 0}

In particular, for α = 1
2
,

dµΦ
X(p◦,t) =

(t+ 1)
√
t− x2

2π
((

1+t
2

)2 − x2
) dx, (3.4)

and

µΦ
X(p◦,t)

({
±1 + t

2

})
= max

{
1− t

2
, 0

}
.

c. The W ∗-probability space (Γw(B, φ; t),Φ) is isomorphic to L∞(µΦ
X(p◦,t))⊕ C⊕ C.

d. The distribution of X(p◦, t) with respect to Ψ is

dµΨ
X(p◦,t) =

√
4tα(1− α)−

(
(1− 2α)− x

)2

2π(tα(1− α) + (1− 2α)x)
dx, (3.5)

with support
[
1− 2α− 2

√
tα(1− α), 1− 2α + 2

√
tα(1− α)

]
and, for α 6= 1

2
, an atom

dµΨ
X(p◦,t)

({
−tα(1− α)

1− 2α

})
= max

{
1− t α(1− α)

(1− 2α)2
, 0

}

For α = 1
2
,

dµΨ
X(p◦,t) =

2

πt

√
t− x2 dx. (3.6)

Proof. (a) follows from direct computation and observing the moments are 1, α, α, α, ....

For (b). we will use 3.2.1.1. The Cauchy transform of the distribution of p is

G(z) =
1− α
z

+
α

z − 1
,
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whose inverse is

z =
η + 1±

√
(η + 1)2 − 4η(1− α)

2η
.

Subtracting 2
2η

from this gives the R-transform. To apply Proposition 3.2.1.1 requires the distribu-

tion of p− α, whose R-transform is

z =
(1− 2α)η − 1±

√
(η + 1)2 − 4η(1− α)

2η
.

The R-transform of its (1 + t)th convolution power is

z = (1 + t)
(1− 2α)η − 1±

√
(η + 1)2 − 4η(1− α)

2η
.

Adding 2
2η

to this and inverting gives the corresponding Cauchy transform

G1+t(z) =
(1− 2α)(1 + t)− (1− t)z − (t+ 1)

√
4α2(1 + t)− 4α(1 + t− z) + (z − 1)2

2(α(1 + t) + z)((1− α)(1 + t)− z)
.

Applying Stieltjes inversion gives the result.

Applying Proposition 8 from Chapter 3 of [15] gives the atoms.

(d) Since p must have the form

α β

β 1− α

 where β2 = α(1 − α), p◦ =

0 β

β 1− 2α

, so

by 3.2.2.1,

RΨ
n [X(p◦, t)] = tBφ

n [p◦]

= t〈p◦Λ(p◦,Λ(p◦, ...,Λ(p◦, p◦)...))Ω,Ω〉

= tα(1− α)(1− 2α)n−2,

and so the R-transform with respect to Ψ is the geometric series

tα(1− α)
∞∑
n=1

(1− 2α)n−1zn.
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This can be written in the form
tα(1− α)z

1− (1− 2α)z
.

Add 1
z

to this and invert to get the Cauchy transform

z =
1− 2α + η ±

√
(1− 2α + η)2 − 4(tα(1− α) + (1− 2α)η)

2(tα(1− α) + (1− 2α)η)
.

Apply Stieltjes inversion to get the absolutely continuous part. We have an atom at x = −tα(1−α)
1−2α

,

with measure max
{

1− t α(1−α)
(1−2α)2

, 0
}

.

Corollary 3.3.1.2. Fix α = 1
2
. Re-scale the time by t = θ

1−θ and the variable itself by 2
√

1− θ, so

that we consider

2
√

1− θX(p◦).

The distribution of this variable with respect to Φt is

√
4θ − x2

2π(1− (1− θ)x2)
dx+ max

{
1− 2θ

2(1− θ)
, 0

}
(δ−1/

√
1−θ + δ1/

√
1−θ),

and with respect to Ψt it is
1

2πθ

√
4θ − x2 dx.

Note that these are exactly the two distributions of the θ-Gaussian element in Proposition 2.1

[6]. So up to this re-scaling, we can apply his results directly to describe the von Neumann algebra.

3.3.2 B = ∗di=1C2 (Free product of 3.3.1)

Notation 3.3.2.1. In this section, we will take d copies of C2, where the ith copy is generated by

the identity and the projection with state αi (assuming without loss of generality again that αi ≤ 1
2
).

Borrowing notation from [13], this information is denoted C2 =
pi
C
αi
⊕

1−pi
C

1−αi
.

Theorem 3.3.2.2. Let B be the free product ∗di=1C2. Then in (Γw(B, φ; t),Φ), the von Neumann
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subalgebra generated by X(p◦i ) is

W ∗(X(p◦i ) : 1 ≤ i ≤ d) '



L(Fx)
1−γ1−γ2

⊕ C
γ1
⊕ C

γ2
, t <

αd−
∑d−1
i=1 αi

1−(αd−
∑d−1
i=1 αi)

,

L(Fx)
1−γ1

⊕ C
γ1
,

αd−
∑d−1
i=1 αi

1−(αd−
∑d−1
i=1 αi)

≤ t <
1−((

∑d
i=1 αi))

(
∑d
i=1 αi)

,

Fd,
1−((

∑d
i=1 αi))

(
∑d
i=1 αi)

≤ t,

where

γ1 = max

{
1−

(
d∑
i=1

α1

)
(1 + t), 0

}

γ2 = max

{(
αd −

d−1∑
i=1

αi

)
(1 + t)− t, 0

}

and x is chosen so that the free dimension is the sum of the free dimensions of W ∗(X(p◦i )).

Proof. Since αd ≤ 1
2
,

αd −
∑d−1

i=1 αi

1−
(
αd −

∑d−1
i=1 αi

) ≤ 1−
((∑d

i=1 αi

))
(∑d

i=1 αi

) .

So the statement of the theorem is equivalent to W ∗(X(p◦i ) : 1 ≤ i ≤ d) ' L(Fx)
1−γ1−γ2

⊕ C
γ1
⊕ C

γ2
, for

γ1, γ2 as above. We will prove this by induction on d. For d = 1, this follows from Theorem 3.3.1.1.

Since by assumption, {p◦i : 1 ≤ i ≤ d} are free in (B, φ), by Corollary 3.2.2.2,

W ∗(X(p◦i ) : 1 ≤ i ≤ d) = ∗di=1W
∗(X(p◦i )).

Since the free product is a commutative operation, without loss of generality we may assume that

αi’s are increasing.

Suppose the statement holds for d. Then by Theorem 2.4 of [13] (provided in Subsection 1.2.5.1
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for convenience),

(Γ(B),Φ)∗(d+1) ' L(Fx)
1−γ11−γ12−γ21−γ22

⊕ C
γ11
⊕ C

γ12
⊕ C

γ21
⊕ C

γ22
,

where

γ11 = max

{
1−

(
d+1∑
i=1

αi

)
(1 + t), 0

}

γ12 = max

{(
αd − αd+1 −

d−1∑
i=1

αi

)
(1 + t)− t, 0

}

γ21 = max

{(
αd+1 −

d∑
i=1

αi

)
(1 + t)− t, 0

}

γ22 = max

{(
αd+1 + αd −

d−1∑
i=1

αi

)
(1 + t)− 2t− 1, 0

}
.

Note that this expansion holds even if some of γ1, γ2 are zero. Since αd ≤ αd+1, γ12 = 0. Since

αd, αd+1 ≤ 1
2
, γ22 = 0. Finally, γ11 and γ21 are precisely the forms of γ1, γ2 for d + 1. The result

follows.

3.3.3 B = Md+1(C), d ≥ 2

Remark 3.3.3.1. Following [29], for 1 ≤ i ≤ d, let Hi = CΩi ⊕ H◦i be pointed Hilbert spaces,

and (Bi, φi) be star-probability spaces represented on them as in Construction 3.1.0.1. Let

H = CΩ⊕
d⊕
i=1

H◦i .

Represent each Bi onH by

bi(sΩ⊕ ξ1 ⊕ . . .⊕ ξd) = sφi[bi]Ω⊕ 0⊕ . . .⊕ (sbiΩ− sφi[bi]Ω)⊕ . . .⊕ 0

+ 〈biξi,Ωi〉Ω⊕ 0⊕ . . .⊕ (biξi − 〈biξi,Ωi〉Ω)⊕ . . .⊕ 0.
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Let B be the algebra generated by these non-unital embeddings of {Bi : 1 ≤ i ≤ d} in B(H), and

φ the vector state given by Ω. Then {Bi : 1 ≤ i ≤ d} are Boolean independent in (B, φ). Clearly

φ is faithful; if each representation of Bi onHi is faithful, so are their representations onH.

Corollary 3.3.3.2. Let {αi : 1 ≤ i ≤ d} ⊂ (0, 1). Consider the algebra Md+1(C) with the (not

faithful) vector state φ11 given by the (1, 1) entry. In this algebra, we can choose projections

{pi : 1 ≤ i ≤ d} such that {p◦i = pi − αi : 1 ≤ i ≤ d} are centered, Boolean independent, and

generate Md+1(C).

Proof. Let H = CΩ ⊕
⊕d

i=1Hi, where each Hi ' C. On B(CΩ ⊕ Hi) = M2(C), let φi be

the vector state for Ω, in other words the (1, 1) entry of the matrix. In this algebra, let pi be a

projection with φ[pi] = αi, and p◦i = pi − αi. Denote by B the subalgebra of Md+1(C) generated

by {p◦i : 1 ≤ i ≤ d}.

Note that p◦i = βi(E1,i+1 + Ei+1,1) + γiEi+1,i+1, with βi 6= 0. Then for i 6= j, p◦i p
◦
j =

βiβjEi+1,j+1. Therefore Ei+1,j+1 ∈ B for i 6= j. Multiplying these, also Ei+1,i+1 ∈ B. Next,

p◦iEi+1,i+1 = βiE1,i+1 + γiEi+1,i+1, so also E1,i+1 ∈ B, as is Ei+1,1. Multiplying these, also

E1,1 ∈ B.

Proposition 3.3.3.3. Let {αi : 1 ≤ i ≤ d} ⊂ (0, 1), and {pi : 1 ≤ i ≤ d} as in the preceding

Corollary. In (Γw(Md+1(C), φ11; t),Ψ), the von Neumann subalgebra generated by X(p◦i ) is

W ∗(X(p◦i ) : 1 ≤ i ≤ d) ' L(Fx)
1−γ

⊕ C
γ
,

where

γ = max

{
1− t

d∑
i=1

αi(1− αi)
(1− 2αi)2

, 0

}
,

and x is chosen so that the free dimension is the sum of the free dimensions of W ∗(X(p◦i )).

Proof. The argument is similar to Theorem 3.3.2.2.

Since we assume {p◦i : 1 ≤ i ≤ d} are Boolean independent, by Corollary 3.2.2.2, their
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corresponding X(p◦i ) are freely independent with respect to Ψ, so

W ∗(X(p◦i ) : 1 ≤ i ≤ d) = ∗di=1W
∗(X(p◦i )).

By Theorem 3.3.1.1, we have,

W ∗(X(p◦1),Ψ) ' L(F1)
1−γ

⊕ C
γ1
, (3.7)

where γ1 = max
{

1− tα1(1−α1)
(1−2α1)2

, 0
}

, which is nonzero if and only if 1
α1(1−α1)

− 4 > t. The

left-hand side is positive if and only if α1 6= 1
2
.

Applying Proposition 2.4 of [13], we have

W ∗(X(p◦1),Ψ) ∗W ∗(X(p◦2),Ψ) ' L(Fx)
γ

⊕ C
1−γ

,

where γ2 = max
{

1− t
(
α1(1−α1)
(1−2α1)2

+ α2(1−α2)
(1−2α2)2

)
, 0
}

.

Through repeated applications of Proposition 2.4 of [13], it is clear that

(Γa(Bi, φ; t),Ψ)∗di=1,...,d ' L(Fx)
1−γ

⊕ C
γ
,

where

γ = max

{
1− t

d∑
i=1

αi(1− αi)
(1− 2αi)2

, 0

}
.

Corollary 3.3.3.4. For 1 ≤ i ≤ d, let p◦i = 1
2
(E1,1+i + E1+i,1). In (Γw(Md+1(C), φ11; t),Φ), the

von Neumann subalgebra generated by X(p◦i ) is

W ∗(X(p◦i ) : 1 ≤ i ≤ d) '


L(Fd) if t ≥

√
d

L(Fd)⊕ B(`2) otherwise.
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Proof. Rescaling a single X(p◦, t) according to Corollary 3.3.1.2 gives a distribution with respect

to Φ which matches that in Proposition 2.1 of [6] (with respect to what they call φ), with θ taking

the role played by t in their densities. With respect to Ψ, we get the semi-circle distribution with

radius 2
√
θ, which matches the distribution of Ricard’s t-gaussian with respect to what they call ψ.

Since we are taking conditionally free products, the joint distribution of multiple copies ofX(p◦, t)

under the c-free product state is determined entirely by the individual distributions. Hence, their

joint distribution matches that of Ricard’s t-gaussians under their conditionally free product state.

By Theorem 1.2.4.1, this is sufficient to conclude that our c-free product von Neumann algebra

and theirs are isomorphic. Finally, a simple calculation converts their case cutoffs from terms of θ

to t.

3.3.4 B = L∞[0, 2π]

For this case, we will need the following surely well-known technical lemma, although we do

not have a reference for it.

Lemma 3.3.4.1. LetH be a Hilbert space, andA a subalgebra of B(H), such that a vector Ω ∈ H

is cyclic for A′. Let (xn)∞n=1 ∈ A be a sequence. If xnΩ → xΩ for x ∈ A′′, then xn → x in the

WOT.

If the sequence is (norm) bounded, it converges σ-weakly.

Proof. For ξ ∈ H, take a bounded (by someM > 0) sequence {yn} ⊂ A′ such that ‖ynΩ−ξ‖ → 0

as n→∞. By taking subsequences, we can assume that ‖ynΩ− ξ‖ ≤ min
{

1
n‖xn‖ ,

1
n

}
Then

|〈xnξ − xξ, η〉| ≤ |〈xnξ − xnynΩ, η〉|+ |〈xnynΩ− xynΩ, η〉|+ |〈xynΩ− xξ, η〉|

≤ ‖xn‖‖ynΩ− ξ‖‖η‖+ |〈yn(xnΩ− xΩ), η〉|+ ‖x‖‖ynΩ− ξ‖‖η‖

≤ ‖xn‖‖ynΩ− ξ‖‖η‖+M‖xnΩ− xΩ‖‖η‖+ ‖x‖‖ynΩ− ξ‖‖η‖

all three of which converge to zero as n→∞.
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The second claim follows from the fact that the weak and σ-weak topologies are equivalent on

bounded subsets of B(H).

The following identities all follow from the standard properties of an orthonormal basis.

Lemma 3.3.4.2. LetB be commutative, and {ek : k ∈ Z} ⊂ B◦ a family such that {ekΩ : k ∈ Z6=0} ⊂

H◦ is an orthonormal basis and eke∗k = 1. For example, we may take B = L∞[0, 1), Ω = 1, and

ek(x) = e2πikx for k 6= 0. Then for any f, g ∈ B◦, we have

1

N

N∑
k=1

〈eke∗kΩ,Ω〉Ω = Ω, (3.8)

lim
N→∞

N∑
j,k=1

〈ekfΩ,Ω〉 〈Ω, ekgΩ〉 〈Ω, ejfΩ〉 〈ejgΩ,Ω〉 = |〈fΩ, gΩ〉|2 , (3.9)

lim
N→∞

N∑
j,k=1

〈ekfΩ,Ω〉 〈Ω, ejfΩ〉 〈ejgΩ, ekgΩ〉 = 〈ff ∗Ω, gg∗Ω〉 , (3.10)

〈ekfe∗kΩ,Ω〉 = 0, (3.11)

lim
N→∞

1

N

N∑
j,k=1

〈ekfΩ, ejfΩ〉 〈ejgΩ, ekgΩ〉 = 〈ff ∗Ω, gg∗Ω〉 , (3.12)

and

lim
N→∞

N∑
j,k=1

〈(
ekfe

∗
kΩ− 〈e∗kfΩ,Ω〉 ekΩ− 〈ekfe∗kΩ,Ω〉Ω

)
− fΩ,

(
ejfe

∗
jΩ−

〈
e∗jfΩ,Ω

〉
ejΩ−

〈
ejfe

∗
jΩ,Ω

〉
Ω
)
− fΩ

〉
= 〈fΩ, fΩ〉 . (3.13)

Throughout this section, we will compute the limits of either

1

N

N∑
k=1

X(ek)X(e∗k)(f1Ω⊗ . . .⊗ fnΩ)
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or
1

N

N∑
k=1

X(ek)Xr(e
∗
k)(f1Ω⊗ . . .⊗ fnΩ)

In either case, we have 9 possible, terms, involving pairs of a+, a−, a0. The square of the sum of

the terms of each type looks like

1

N2

N∑
j,k=1

〈
a?(ek)a

†
· (e
∗
k)(f1Ω⊗ . . .⊗ fnΩ), a?(ej)a

†
· (e
∗
j)(f1Ω⊗ . . .⊗ fnΩ)

〉

and so has N2 terms. For the 5 terms involving some a+, we use orthogonality of ek to conclude

that the sum in the norm has only N terms (the only exceptions are the actions of a−a+ and a0a+

on Ω). For the a−, a− case we use the first identity in the lemma, for the a−, a0 case the second

and the fourth, for the a0, a0 case the third and the fifth.

Remark 3.3.4.3. Note that the right operator is

Xr(f)(ξ1 ⊗ . . .⊗ ξn) = ξ1 ⊗ . . .⊗ ξn ⊗ (fΩ− φ[f ]Ω)

+ ξ1 ⊗ . . .⊗ ξn−1 ⊗ (ξnf − 〈ξnf,Ω〉Ω) + tξ1 ⊗ . . .⊗ ξn−1 〈ξnf,Ω〉 ,

Xr(f)(ξ1) = ξ1 ⊗ (fΩ− φ[f ]Ω) + (ξ1f − 〈ξ1f,Ω〉Ω) + (1 + t) 〈ξ1f,Ω〉Ω,

Xr(f)Ω = fΩ.

See the final property in Remark 3.1.0.4. Since B is commutative, φ is tracial.

Theorem 3.3.4.4. Let B = L∞[0, 1) and t ≥ 0. Let φ be given by integration against a non-atomic

probability measure µ. Note that without loss of generality, we may take µ to be the Lebesgue

measure. Then for n ≥ 2 and f1, . . . , fn ∈ B◦, as N →∞, σ-weakly

1

N

N∑
k=1

X(ek, t)W (f1 ⊗ . . .⊗ fn)X(e∗k, t)→ 0,

118



while
1

N

N∑
k=1

X(ek, t)X(f, t)X(e∗k, t)→ X(f, t),

and
1

N

N∑
k=1

X(ek, t)X(e∗k, t)→ (1 + t).

Proof. Clearly, each sequence 1
N

∑N
k=1X(ek, t)W (f1⊗ . . .⊗fn)X(e∗k, t) is bounded. Also, all the

assumptions in Theorem 2.5.0.3 are satisfied, which implies in particular that the vacuum vector is

cyclic for the commutant of Γw(B, φ; t). Therefore by Lemma 3.3.4.1, it suffices to show that

1

N

N∑
k=1

X(ek, t)W (f1 ⊗ . . .⊗ fn)X(e∗k, t)Ω→ 0,

1

N

N∑
k=1

X(ek, t)X(f, t)X(e∗k, t)Ω→ f,

and
1

N

N∑
k=1

X(ek, t)X(e∗k, t)Ω→ (1 + t)Ω.

Note that

N∑
k=1

X(ek, t)W (f1 ⊗ . . .⊗ fn)X(e∗k, t)Ω =
N∑
k=1

X(ek, t)W (f1 ⊗ . . .⊗ fn)Xr(e
∗
k, t)Ω

=
N∑
k=1

X(ek, t)Xr(e
∗
k, t)(f1 ⊗ . . .⊗ fn).

Decompose each X(ek, t) = e+(ek) + a−(ek) + a0(ek), and the same for Xr(ek). Then we have 9

cases.

• 1
N

∥∥∥∑N
k=1 a

?(ek)a
+
r (e∗k)(f1Ω⊗ . . .⊗ fnΩ)

∥∥∥2

t
→ 0, for ? = +,−, 0 and n ≥ 1, all follow

from orthogonality between different ek, since the expansion of the inner product will have

coefficient 1
N2 but only N uniformly bounded terms. The same argument gives the vanish-

ing limit for a+(ek)a
?
r(e
∗
k). For n = 0, the limits are also zero, with the single exception
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1
N

∑N
k=1 a

−(ek)a
+
r (e∗k)Ω = (1 + t)Ω as seen in equation (3.8).

• 1
N

∥∥∥∑N
k=1 a

−(ek)a
−
r (e∗k)(f1Ω⊗ . . .⊗ fnΩ)

∥∥∥
t
→ 0 for n ≥ 2 follows from equation (3.9),

and for n ≤ 1 by definition.

• 1
N

∥∥∥∑N
k=1 a

−(ek)a
0
r(e
∗
k)(f1Ω⊗ . . .⊗ fnΩ)

∥∥∥
t
→ 0 for n ≥ 2 follows from equations (3.9)

and (3.10). For n = 1 it follows from equation (3.11), and for n = 0 from the definition.

• 1
N

∥∥∥∑N
k=1 a

0(ek)a
−
r (e∗k)(f1Ω⊗ . . .⊗ fnΩ)

∥∥∥
t
→ 0 for n ≥ 2 in the same way, for n ≤ 1 by

definition.

• 1
N

∥∥∥∑N
k=1 a

0(ek)a
0
r(e
∗
k)(f1Ω⊗ . . .⊗ fnΩ)

∥∥∥
t
→ 0 for n ≥ 2 follows from equations (3.12)

and (3.9). For n = 1, it follows from equation (3.13) that 1
N

∑N
k=1 a

0(ek)a
0
r(e
∗
k)fΩ → fΩ.

For n = 0, the limit is zero by definition.

The following corollary is a variation on Theorem 2.10 in [30].

Corollary 3.3.4.5. Let B = L∞[0, 1) and t > 0. The unique normal tracial state on the multino-

mial algebra Γw(B, φ; t) is the vacuum state. Consequently this algebra is a type II1-factor.

Proof. Let τ be such a state. On the one hand, for n ≥ 1, by the last part of Theorem 3.3.4.4,

1

N
τ

[
N∑
k=1

X(ek, t)W (f1, . . . , fn)X(e∗k, t)

]
= τ

[(
1

N

N∑
k=1

X(ek, t)X(e∗k, t)

)
W (f1, . . . , fn)

]

→ (1 + t)τ [W (f1, . . . , fn)] .

On the other hand, by Theorem 3.3.4.4 again, for n ≥ 2,

1

N
τ

[
N∑
k=1

X(ek, t)W (f1, . . . , fn)X(e∗k, t)

]
→ 0 = 〈W (f1, . . . , fn)Ω,Ω〉 .
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Thus τ [W (f1, . . . , fn)] = 0. Similarly, for n = 1,

1

N
τ

[
N∑
k=1

X(ek, t)W (f1)X(e∗k, t)

]
→ τ [W (f1)].

For t > 0 this implies that also τ [W (f1)] = 0 = 〈W (f1)Ω,Ω〉. It follows that τ is the vacuum

state.

Finally, we justify the choice of the coefficients in the annihilation operator in the main con-

struction.

Proposition 3.3.4.6. Define the operators a+, a0, a− as in the main construction, with the excep-

tion that a−(f)(g) = (1 + s)a−φ (f)(g). Suppose that s 6= t.

a. The vacuum state is not tracial.

b. Suppose in addition that B = L∞[0, 1), with φ the usual integration. Then the (s 6= t)

version of Γw(B, φ; t) is the algebra of all bounded operators on the Fock space.

Proof. (a) This follows from checking the conditions outlined in Theorem 2.5.0.3.

(b) The proof follows the general idea of [5]. Let ek = e2πikθ as before. We next show that

1
N

∑N
k=1X(ek, t)X(e∗k, t) converges to S := (1 + t)I + (s − t)PΩ in SOT. The computation is

similar to the proof of Theorem 3.3.4.4 using Lemma 3.3.4.2: 1
N

∑N
k=1 a

−(ek)a
+(e∗k)→ tI + (1 +

s− t)PΩ, 1
N

∑N
k=1 a

0(ek)a
0(e∗k)→ I−PΩ, and the rest of the limits are zero. It follows that S is in

Γw(B, φ; t). Next, S2 − (1 + t)S = (1 + s)(s− t)PΩ, which shows PΩ ∈ Γw(B, φ; t) since s 6= t.

It is also easy to check that Ω is cyclic for Γw(B, φ; t). So by Proposition 2.4 of [5], the commutant

of Γw(B, φ; t) is trivial. In other words, Γw(B, φ; t) is the algebra of all bounded operators on the

Fock space.
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APPENDIX A

AN ALTERNATIVE CONSTRUCTION

In our initial studies of the three motivating constructions, we were faced with the decision

of which construction to pursue: a Fock space over an operator algebra B, or one over a Hilbert

space H. We chose the former, which we already discussed extensively in this work. Here, I will

showcase the analogous results for the latter.

Construction A.0.0.1. LetHR be a real Hilbert space, andH its complexification, on which (to be

consistent with the rest of the paper) we will denote the conjugation by ∗. Let C : H⊗H → H⊗H

be a bounded linear map such that C(f ∗ ⊗ g∗) = C(f ⊗ g)∗, I ⊗ C and C ⊗ I commute, and

C + I ⊗ I is positive. Let Λ : H⊗H → H be a bounded linear map such that

〈g,Λ(b⊗ f)〉 = 〈Λ(b∗ ⊗ g), f〉

and

C(Λ⊗ I) = (Λ⊗ I)(I ⊗ C).

On the algebraic Fock space

CΩ⊕
∞⊕
n=1

H⊗n,

define the operator K by

Kn = ((C + I⊗2)⊗ I⊗(n−2))(I ⊗ (C + I⊗2)⊗ I⊗(n−3) . . . (I⊗(n−2) ⊗ (C + I⊗2))

and K = I ⊕ I ⊕
⊕∞

n=2 Kn. Define the inner product on the Fock space by the linear extension of

〈f1 ⊗ . . .⊗ fn, g1 ⊗ . . .⊗ gk〉C = δn=k 〈f1 ⊗ . . .⊗ fn, K(g1 ⊗ . . .⊗ gk)〉 ,
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where 〈·, ·〉 is the standard inner product on H⊗k. Denote the completion by FC(H). Next, we

define densely defined operators indexed by elements ofH by the linear extension of

`∗(f)(f1 ⊗ . . .⊗ fn) = 〈f1, f
∗〉 f2 ⊗ . . .⊗ fn,

a+(f)(f1 ⊗ . . .⊗ fn) = f ⊗ f1 ⊗ . . .⊗ fn,

a−(f)(f1 ⊗ . . .⊗ fn) = `∗(f)[(C + I)(f1 ⊗ f2)⊗ . . .⊗ fn]

= `∗(f)[C(f1 ⊗ f2)⊗ . . .⊗ fn] + 〈f, f1〉 f2 ⊗ . . .⊗ fn],

a−(f)(f1) = `∗(f)(f1) = 〈f1, f
∗〉Ω,

a0(f)(f1 ⊗ . . .⊗ fn) = Λ(f ⊗ f1)⊗ f2 ⊗ . . .⊗ fn,

a−(f)(Ω) = a0(f)(Ω) = 0.

We also define the vacuum state 〈AΩ,Ω〉 and

X(f) = a+(f) + a−(f) + a0(f).

Remark A.0.0.2. Many properties of this construction parallel those of the body of the paper, and

so are provided without proof.

Lemma A.0.0.3. If C+ I⊗2 is injective, then the Fock space inner product in Construction A.0.0.1

is non-degenerate. In particular, this is the case if ‖C‖ < 1, or if C + tI ≥ 0 for some t < 1.

Proposition A.0.0.4. For any ~ξ, ~η,

〈
a+(f)~ξ, ~η

〉
C

=
〈
~ξ, a−(f ∗)~η

〉
C

and
〈
a0(f)~ξ, ~η

〉
C

=
〈
~ξ, a0(f ∗)~η

〉
C
.

The operators are bounded on FC(H) under the default assumptions that C : H⊗2 → H⊗2 and

Λ : H⊗2 → H are both bounded, and the inner product is non-degenerate if C+ I⊗ I is invertible.

Remark A.0.0.5. Example 2.1.1.1 fits in this setting with C being the multiplication operator by

1 + w. However, Example 2.1.3.1 does not, nor Example 2.1.4.1 except in the case where ψ is
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a multiple of φ. On the other hand, the examples below do not fit in the setting of Construc-

tion 2.1.0.1.

Example A.0.0.6. If {ei : i ∈ N} is an orthonormal basis forHR, we may defineC byC(ei⊗ej) =

Cijei ⊗ ej . In this case it is also natural to define Λ(ei ⊗ ej) =
∑

k B
k
ijek. This is an extension of

the setting of [1] different from Example 2.1.2.1.

Example A.0.0.7. Let H = L2([0, 1], dx), and {ei} the Fourier basis. Then C from the preceding

example is a convolution operator on L2([0, 1]2, dx⊗ dx). That is,

C(f)(x, y) =

∫
f(u− x, v − y) dν(u, v).

for ν a positive measure on [0, 1]2. In this case, it is also natural to define T : L2([0, 1]2, dx⊗dx)→

L2([0, 1], dx) by

T (f)(x) =

∫
f(u, v) dρx(−u,−v).

for {ρx : x ∈ [0, 1]} a family of complex measures on [0, 1]2.

We next establish analogues of the results of Sections 2.2, 2.3, and 2.4.

Definition A.0.0.8. Let W0(f) = 1, W (f) = X(f),

W (f1, f2) = X(f1)W (f2)−W (Λ(f1 ⊗ f2))− 〈f1, f2〉,

and for n ≥ 3,

W (f1, ..., fn)

= X(f1)W (f2, ..., fn)−W (Λ(f1 ⊗ f2), f3, ..., fn)−W (`∗(f1)(C + I)(f2 ⊗ f3), f4, ..., fn).

Denote W (f) = 1 +
∑∞

n=1Wn(f).

Before stating convergence conditions, we have the following norm estimates, which easily

follow from Lemma 2.4.0.1:
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Lemma A.0.0.9. For any f ∈ H,

∥∥a+(f)
∥∥
C

=
∥∥a−(f)

∥∥
C
≤
√
‖C + I‖ ‖f‖ , and∥∥a0(f)

∥∥
C
≤ ‖Λ‖ ‖f‖ .

The proofs of the next two propositions follow in the same manner as those of Proposi-

tions 2.4.0.4 and 2.4.0.7, respectively.

Proposition A.0.0.10. Let f1, . . . , fn ∈ H. Then there exist a universal constant α and a constant

K > 0, dependent only on ‖C + I‖ and ‖Λ‖, such that for all n,

‖W (f1, . . . , fn)‖ ≤ αn−1
(√
‖C + I‖+ ‖Λ‖

)n−1

K ‖f1‖ . . . ‖fn‖ .

Proposition A.0.0.11. Let L = max{
√
‖C + I‖, ‖Λ‖}. If ‖f‖ ≤ 1

4L
, then the generating function

R′(f) converges, and thus the cumulant generating function does as well.

Proposition A.0.0.12. For each n-tuple of elements of H, R′[f1, . . . , fn] is an operator on H

determined by the relation

R[X(f0), . . . , X(fn+1)] = 〈R′[f1, . . . , fn]fn+1, f
∗
0 〉 .

This operator is bounded via Lemma A.0.0.9 and the Riesz Representation Theorem.

The operators R′n[f ] := R′[f, . . . , f︸ ︷︷ ︸
n times

] satisfy the recursion

R′n[f ](g) =
n−2∑
i=0

R′i[f ]`∗(f)C
(
R′n−i−2[f ]f ⊗ g

)
+R′n−1[f ]Λ(f ⊗ g). (A.1)

Their generating function R′(f) :=
∑∞

n=0R
′
n[f ] (where R′0[f ] = R′[∅] = 1) satisfies the equation

R′(f)(g) = 1 +R′(f)`∗(f)C
(
R′(f)(f)⊗ g

)
+R′(f)Λ(f ⊗ g). (A.2)
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Similarly to Theorem 2.5.0.3, one can give conditions under which the vacuum state is tracial

on ΓC,Λ(H) = W ∗(X(f) : f ∈ H).

If C = 0, the setting of this section is precisely the same as in Theorem 2.5.1.2, so that theorem

holds verbatim. That is, under the assumption that the vacuum state is tracial, one can define a

product onH turning Γ0,Λ(H) = W ∗(X(f) : f ∈ H) into a free compound Poisson algebra.
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